Open Access
Issue |
ESAIM: COCV
Volume 29, 2023
|
|
---|---|---|
Article Number | 73 | |
Number of page(s) | 40 | |
DOI | https://doi.org/10.1051/cocv/2023059 | |
Published online | 14 September 2023 |
- P. Baras and J.A. Goldstein, Remark on the inverse square potential in quantum mechanics. North-Holland Math. Stud. 92 (C) (1984) 31–35. [CrossRef] [Google Scholar]
- V. Barbu, H∞ Boundary control with state feedback; The hyperbolic case. Int. Ser. Numer. Math. 107 (1992) 141–148. [Google Scholar]
- V. Barbu, H∞ Boundary control with state feedback: the hyperbolic case. SIAM J. Control Optim. 33 (1995) 684–701. [CrossRef] [MathSciNet] [Google Scholar]
- V. Barbu, The H∞ -problem for infinite dimensional semilinear systems. SIAM J. Control Optim. 33 (1995) 1017–1027. [CrossRef] [MathSciNet] [Google Scholar]
- V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces. Editura Academiei, Noordhoff International Publishing, Bucureşti, Leyden (1976). [CrossRef] [Google Scholar]
- V. Barbu, Mathematical Methods in Optimization of Differential Systems. Kluwer Academic Publishers, Dordrecht (1994). [CrossRef] [Google Scholar]
- V. Barbu, Nonlinear Differential Equations of Monotone Type in Banach Spaces. Springer, New York (2010). [Google Scholar]
- V. Barbu and T. Precupanu, Convexity and Optimization in Banach Spaces. Springer, Dordrecht (2012). [CrossRef] [Google Scholar]
- V. Barbu and S. Sritharan, H∞ -control theory of fluid dynamics. Proc. R. Soc. Lond. Ser. A 454 (1998) 3009–3033. [CrossRef] [MathSciNet] [Google Scholar]
- T. Basar and P. Bernhard, H∞ -Optimal Control and Related Minimax Design Problems. A Dynamic Game Approach, 2nd edn. Birkhäuser, Boston, Basel, Berlin (1995). [Google Scholar]
- J. Bebernes and D. Eberly, Mathematical Problems from Combustion Theory, Applied Math. Sci. 83. Springer-Verlag, New York (1989). [CrossRef] [Google Scholar]
- H. Brezis and J.L. Vázquez, Blow-up solutions of some nonlinear elliptic problems. Rev. Mat. Complut. 10 (1997) 443–469. [Google Scholar]
- H. Brezis and M. Marcus, Hardy’s inequalities Revisited. Ann. Scuola Norm. Sup. Pisa Cl. Sci. XXV (199) 217–237. [Google Scholar]
- R.F. Curtain and H.J. Zwart, An Introduction to Infinite Dimensional Linear Systems Theory. Springer (1995). [CrossRef] [Google Scholar]
- R. Datko, Uniform asymptotic stability of evolutionary processes in a Banach space. SIAM J. Math. Anal. 3 (1972) 428–445. [CrossRef] [MathSciNet] [Google Scholar]
- J. Doyle, K. Glover, P. Khargonekar and B. Francis, State-space solutions to H2 and H∞ Problems. IEEE Trans. Automatic Control 34 (1999) 831–847. [Google Scholar]
- S. Ervedoza, Control and stabilization properties for a singular heat equation with an inverse-square potential. Commun. Partial Diff. Equ. 33 (2008) 1996–2019. [CrossRef] [Google Scholar]
- G. Fragnelli and D. Mugnai, Carleman estimates for singular parabolic equations with interior degeneracy and non smooth coefficients. Adv. Nonlinear Anal. 6 (2017) 61–84. [CrossRef] [MathSciNet] [Google Scholar]
- D. Fujiwara, Concrete characterization of the domains of fractional powers of some elliptic differential operators of the second order. Proc. Japan Acad. 43 (1967) 82–86. [Google Scholar]
- K. Glover, All optimal Hankel-norm approximations of linear multivariable systems and their L∞ error bounds. Int. J. Control 39 (1984) 1115–1193. [CrossRef] [Google Scholar]
- I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories, Vol. 1: Abstract Parabolic Systems, Vol. 74 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, New York (2000). [Google Scholar]
- J.L. Lions, Optimal Control of Systems Governed by Partial Differential Equations. Springer Berlin, Heidelberg (1971). [CrossRef] [Google Scholar]
- K.M. Mikkola, Weakly coprime factorization and continuous-time systems. IMA J. Math. Control Inform. 25 (2008) 515–546. [CrossRef] [MathSciNet] [Google Scholar]
- A. Packard, M.K.H. Fan and J. Doyle, A power method for the structured singular value, in Decision and Control, Proceedings of the 27th IEEE Conference, IEEE (1988) 2132–2137. [CrossRef] [Google Scholar]
- A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York (1983). [Google Scholar]
- A.J. Pritchard and S. Townley, Robustness optimization for uncertain infinite dimensional systems with unbounded inputs. IMA J. Math. Control Inform. 8 (1991) 121–133. [CrossRef] [MathSciNet] [Google Scholar]
- O.J. Staffans, Quadratic optimal control of regular well-posed linear systems, with applications to parabolic equations, 1997, http://users.abo.fi/staffans/publ.html. [Google Scholar]
- O.J. Staffans, Quadratic optimal control of stable well-posed linear systems. Trans. Am. Math. Soc. 349 (1997) 3679–3715. [CrossRef] [Google Scholar]
- O.J. Staffans, Feedback representations of critical controls for well-posed linear systems, Internat. J. Robust Nonlinear Control 8 (198) 1189–1217. [CrossRef] [MathSciNet] [Google Scholar]
- O.J. Staffans, On the distributed stable full information H∞ minimax problem. Int. J. Robust Nonlinear Control 8 (1998) 1255–1305. [CrossRef] [Google Scholar]
- O.J. Staffans, Coprime factorizations and well-posed linear systems. SIAM J. Control Optim. 36 (1998) 1268–1292. [CrossRef] [MathSciNet] [Google Scholar]
- O.J. Staffans, Well-Posed Linear Systems. Cambridge University Press, Cambridge (2005). [CrossRef] [Google Scholar]
- O.J. Staffans and G. Weiss, Transfer functions of regular linear systems. Part III. Inversions and duality. Integral Equ. Operator Theory 49 (2004) 517–558. [CrossRef] [Google Scholar]
- M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups. Birkhäuser Verlag AG (2009). [Google Scholar]
- J. Vancostenoble and E. Zuazua, Hardy inequalities, observability, and control for the wave and Schrödinger equations with singular potentials. SIAM J. Math. Anal. 41 (2009) 1508–1532. [CrossRef] [MathSciNet] [Google Scholar]
- B. Van Keulen, H∞ -Control for Distributed Parameter Systems: A State-Space Approach. Birkhauser, Boston, MA, (1993). [Google Scholar]
- B. Van Keulen, M.A. Peters and R. Curtain, H∞ -control with state feedback: the infinite dimensional Case. J. Math. Syst. Estim. Control 3 (1993) 1–39. [Google Scholar]
- A.J. van der Schaft, A state space approach to nonlinear H∞ Control. Syst. Cont. Lett. 16 (1991) 1–8. [CrossRef] [Google Scholar]
- A.J. van der Schaft, L2 gain analysis of nonlinear systems and nonlinear state feedback H∞ control. IEEE Trans. Automat. Control 37 (1992) 770–784. [CrossRef] [MathSciNet] [Google Scholar]
- M. Weiss, Riccati equation theory for Pritchard–Salamon systems: a Popov function approach. IMA J. Math. Control Inform. 14 (1997) 45–83. [CrossRef] [MathSciNet] [Google Scholar]
- M. Weiss and G. Weiss, Optimal control of stable weakly regular linear systems. Math. Control Signals Syst. 10 (1997) 287–330. [CrossRef] [Google Scholar]
- G. Zames, Feedback and optimal sensitivity: model reference transformations, multiplicative seminorms and approximate inverses. IEEE Trans. Automat. Control 26 (1981) 301–320. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.