Open Access
Issue
ESAIM: COCV
Volume 29, 2023
Article Number 79
Number of page(s) 8
DOI https://doi.org/10.1051/cocv/2023072
Published online 08 November 2023
  1. A. Agrachev, D. Barilari and U. Boscain, A comprehensive introduction to sub-Riemannian geometry. Vol. 181 of Cambridge Studies in Advanced Mathematics. From the Hamiltonian Viewpoint, With an Appendix by Igor Zelenko. Cambridge University Press, Cambridge (2020). [Google Scholar]
  2. Z.M. Balogh, J.T. Tyson and E. Vecchi, Intrinsic curvature of curves and surfaces and a Gauss-Bonnet theorem in the Heisenberg group. Math. Z. 287 (2017) 1–38. [CrossRef] [MathSciNet] [Google Scholar]
  3. Z.M. Balogh, J.T. Tyson and E. Vecchi, Correction to: Intrinsic curvature of curves and surfaces and a Gauss–Bonnet theorem in the Heisenberg group. Math. Z. 296 (2020) 875–876. [CrossRef] [MathSciNet] [Google Scholar]
  4. D. Barilari et al., Stochastic processes on surfaces in three-dimensional contact sub-Riemannian manifolds. Ann. Inst. Henri Poincaré Probab. Stat. 57 (2021) 1388–1410. [CrossRef] [MathSciNet] [Google Scholar]
  5. D. Barilari, U. Boscain and D. Cannarsa, On the induced geometry on surfaces in 3D contact sub-Riemannian manifolds. Control Optim. Calc. Var. 28 (2022) 109. [Google Scholar]
  6. D. Bennequin, Entrelacements et équations de Pfaff, in Third Schnepfenried Geometry Conference, Vol. 1 (Schnepfenried, 1982). Vol. 107. Astérisque. Soc. Math. France, Paris (1983) 87–161. [Google Scholar]
  7. D. Danielli, N. Garofalo and D.M. Nhieu, Integrability of the sub- Riemannian mean curvature of surfaces in the Heisenberg group. Proc. Am. Math. Soc. 140 (2012) 811–821. [CrossRef] [Google Scholar]
  8. D. Danielli, N. Garofalo and D.M. Nhieu, Sub-Riemannian calculus on hypersurfaces in Carnot groups. Adv. Math. 215 (2007) 292–378. [CrossRef] [MathSciNet] [Google Scholar]
  9. H. Geiges, An Introduction to Contact Topology. Vol. 109. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2008). [Google Scholar]
  10. E. Giroux, Convexité en topologie de contact. Comment. Math. Helv. 66 (1991) 637–677. [CrossRef] [MathSciNet] [Google Scholar]
  11. E. Giroux, Structures de contact en dimension trois et bifurcations des feuilletages de surfaces. Invent. Math. 141 (2000) 615–689. [CrossRef] [MathSciNet] [Google Scholar]
  12. R. Montgomery, A Tour of Subriemannian Geometries, Their Geodesics and Applications. Vol. 91. Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2008). [Google Scholar]
  13. M.M. Peixoto, Structural stability on two-dimensional manifolds. Topology 1 (1962) 101–120. [CrossRef] [MathSciNet] [Google Scholar]
  14. J. Veloso, Limit of Gaussian and normal curvatures of surfaces in Riemannian approximation scheme for sub-Riemannian three dimensional manifolds and Gauss-Bonnet theorem. arXiv preprint arXiv:2002.07177 (2020). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.