Open Access
Volume 29, 2023
Article Number 80
Number of page(s) 35
Published online 08 November 2023
  1. P. Alphonse and J. Bernier, Polar decomposition of semigroups generated by non-selfadjoint quadratic differential operators and regularizing effects. Ann. Sci. Éc. Norm. Supér. 56 (2023) 323–382. [CrossRef] [MathSciNet] [Google Scholar]
  2. P. Alphonse, Null-controllability of evolution equations associated with fractional Shubin operators through quantitative Agmon estimates. Preprint: arXiv:2012.04374. [Google Scholar]
  3. P. Alphonse, Quadratic differential equations: partial Gelfand–Shilov smoothing effect and null-controllability. J. Inst. Math. Jussieu 20 (2021) 1749–1801. [CrossRef] [MathSciNet] [Google Scholar]
  4. K. Beauchard, M. Egidi and K. Pravda-Starov, Geometric conditions for the null-controllability of hypoelliptic quadratic parabolic equations with moving control supports. C. R. Math. Acad. Sci. Paris 358 (2020) 651–700. [MathSciNet] [Google Scholar]
  5. K. Beauchard, P. Jaming and K. Pravda-Starov, Spectral estimates for finite combinations of Hermite functions and null-controllability of hypoelliptic quadratic equations. Studia Math. 260 (2021) 1–43. [CrossRef] [MathSciNet] [Google Scholar]
  6. K. Beauchard and K. Pravda-Starov, Null-controllability of hypoelliptic quadratic differential equations. J. Éc. polytech. Math. 5 (2018) 1–43. [CrossRef] [MathSciNet] [Google Scholar]
  7. R.P. Boas, Entire functions. Academic Press Inc., New York (1954). [Google Scholar]
  8. J.M. Coron, Control and Nonlinearity, Vol. 136 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2007). [Google Scholar]
  9. A. Dicke, A. Seelmann and I. Veselić, Uncertainty principle for Hermite functions and null-controllability with sensor sets of decaying density. J. Fourier Anal. Appl. 29 (2023) 11. [CrossRef] [Google Scholar]
  10. A. Dicke, A. Seelmann and I. Veselić, Spectral inequality with sensor sets of decaying density for Schrödinger operators with power growth potentials. Preprint: arXiv:2206.08682. [Google Scholar]
  11. M. Egidi, I. Nakić, A. Seelmann, M. Täufer, M. Tautenhahn and I. Veselić, Null-controllability and control cost estimates for the heat equation on unbounded and large bounded domains, in Control Theory of Infinite-Dimensional Systems, edited by J. Kerner, H. Laasri and D. Mugnolo. Springer International Publishing, Cham (2020) 117–157. [CrossRef] [Google Scholar]
  12. M. Egidi and A. Seelmann, An abstract Logvinenko–Sereda type theorem for spectral subspaces. J. Math. Anal. Appl. 500 (2021) 125149. [CrossRef] [Google Scholar]
  13. M. Egidi and I. Veselić, Sharp geometric condition for null-controllability of the heat equation on d and consistent estimates on the control cost. Arch. Math. (Basel) 111 (2018) 85–99. [CrossRef] [MathSciNet] [Google Scholar]
  14. M. Egidi and I. Veselić, Scale-free unique continuation estimates and Logvinenko–Sereda theorems on the torus. Ann. Henri Poincaré 21 (2020) 3757–3790. [CrossRef] [MathSciNet] [Google Scholar]
  15. D. Gallaun, C. Seifert and M. Tautenhahn, Sufficient criteria and sharp geometric conditions for observability in Banach spaces. SIAM J. Control Optim. 58 (2020) 2639–2657. [CrossRef] [MathSciNet] [Google Scholar]
  16. M. Hitrik and K. Pravda-Starov, Spectra and semigroup smoothing for non-elliptic quadratic operators. Math. Ann. 344 (2009) 801–846. [CrossRef] [MathSciNet] [Google Scholar]
  17. M. Hitrik, K. Pravda-Starov and J. Viola, From semigroups to subelliptic estimates for quadratic operators. Trans. Am. Math. Soc. 370 (2018) 7391–7415. [CrossRef] [Google Scholar]
  18. L. Hörmander, Symplectic classification of quadratic forms, and general Mehler formulas. Math. Z. 219 (1995) 413–449. [CrossRef] [MathSciNet] [Google Scholar]
  19. F. John, Extremum problems with inequalities as subsidiary conditions, in Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948. Interscience Publishers, Inc., New York, N.Y. (1948) 187–204. [Google Scholar]
  20. H. Jung, Ueber die kleinste Kugel, die eine räumliche Figur einschliesst. J. Reine Angew. Math. 123 (1901) 241–257. [MathSciNet] [Google Scholar]
  21. V.È. Kacnel’son, Equivalent norms in spaces of entire functions, Mat. Sb. (N.S.) 92 (1973) 34–54. [MathSciNet] [Google Scholar]
  22. A. Kolmogoroff, Zufällige Bewegungen. (Zur Theorie der Brownschen Bewegung.). Ann. Math. 35 (1934) 116–117. [CrossRef] [MathSciNet] [Google Scholar]
  23. O. Kovrijkine, Some estimates of Fourier transforms. Ph.D. Thesis, California Institute of Technology, ProQuest LLC, Ann Arbor, MI (2000). [Google Scholar]
  24. O. Kovrijkine, Some results related to the Logvinenko-Sereda theorem. Proc. Am. Math. Soc. 129 (2001) 3037–3047. [CrossRef] [Google Scholar]
  25. J. Le Rousseau and I. Moyano, Null-controllability of the Kolmogorov equation in the whole phase space. J. Differ. Equ. 260 (2016) 3193–3233. [CrossRef] [Google Scholar]
  26. V.N. Logvinenko and J.F. Sereda, Equivalent norms in spaces of entire functions of exponential type. Teor. Funkciĭ Funkcional. Anal. Priložen. 20 (1974) 102–111. [Google Scholar]
  27. J. Martin, Spectral inequalities for anisotropic Shubin operators. Preprint: arXiv:2205.11868. [Google Scholar]
  28. J. Martin and K. Pravda-Starov, Spectral inequalities for combinations of Hermite functions and null-controllability for evolution equations enjoying Gelfand–Shilov smoothing effects. J. Inst. Math. Jusieu (2022) 1–50. [Google Scholar]
  29. L. Miller, Unique continuation estimates for sums of semiclassical eigenfunctions and null-controllability from cones. Preprint: HAL:00411840. [Google Scholar]
  30. I. Nakić, M. Täufer, M. Tautenhahn and I. Veselić, Sharp estimates and homogenization of the control cost of the heat equation on large domains. ESAIM Control Optim. Calc. Var. 26 (2020) 26. [CrossRef] [EDP Sciences] [Google Scholar]
  31. F.L. Nazarov, Local estimates for exponential polynomials and their applications to inequalities of the uncertainty principle type. Algebra Analiz 5 (1993) 3–66. [Google Scholar]
  32. F. Nicola and L. Rodino, Global Pseudo-differential Calculus on Euclidean Spaces, Vol. 4. Birkhäuser, Basel (2010). [CrossRef] [Google Scholar]
  33. K. Schmüdgen, Unbounded Self-adjoint Operators on Hilbert Space, Vol. 265. Springer, Dordrecht (2012). [CrossRef] [Google Scholar]
  34. A. Seelmann, The Laplacian on Cartesian products with mixed boundary conditions. Arch. Math. 117 (2021) 87–94. [CrossRef] [MathSciNet] [Google Scholar]
  35. G. Tenenbaum and M. Tucsnak, On the null-controllability of diffusion equations. ESAIM Control Optim. Calc. Var. 17 (2011) 1088–1100. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  36. M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups. Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser Verlag, Basel (2009). [CrossRef] [Google Scholar]
  37. G. Wang, M. Wang, C. Zhang and Y. Zhang, Observable set, observability, interpolation inequality and spectral inequality for the heat equation in n. J. Math. Pures Appl. 126 (2019) 144–194. [CrossRef] [MathSciNet] [Google Scholar]
  38. J. Weidmann, Linear Operators in Hilbert Spaces. Transl. by Joseph Szücs, Vol. 68. Springer, New York, NY (1980). [CrossRef] [Google Scholar]
  39. E. Zuazua. Controllability of Partial Differential Equations. Lecture, URL:, August 2006. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.