Open Access
Issue
ESAIM: COCV
Volume 30, 2024
Article Number 11
Number of page(s) 36
DOI https://doi.org/10.1051/cocv/2023071
Published online 28 February 2024
  1. P.-A. Absil, R. Mahony and R. Sepulchre, Optimization Algorithms on Matrix Manifolds. Princeton University Press (2008). [CrossRef] [Google Scholar]
  2. I. Agricola and T. Friedrich, Elementary Geometry. Vol. 43 of Student Mathematical Library. American Mathematical Society (2008). [CrossRef] [Google Scholar]
  3. G. Allaire, C. Dapogny and P. Frey, Shape optimization with a level set based mesh evolution method. Comput. Methods Appl. Mech. Eng. 282 (2014) 22-53. [Google Scholar]
  4. C. Alsina and R.B. Nelsen, Geometric proofs of the Weitzenbock and Hadwiger-Finsler inequalities. Math. Mag. 81 (2008) 216-219. [CrossRef] [Google Scholar]
  5. S. Bartels and G. Wachsmuth, Numerical approximation of optimal convex shapes. SIAM J. Sci. Comput. 42 (2020) A1226-A1244. [CrossRef] [Google Scholar]
  6. M. Berggren, A unified discrete-continuous sensitivity analysis method for shape optimization, in Applied and Numerical Partial Differential Equations. Vol. 15 of Computational Methods in Applied Sciences. Springer, New York (2010) 25-39. [CrossRef] [Google Scholar]
  7. R.P. Bhatia and K.L. Lawrence, Two-dimensional finite element mesh generation based on stripwise automatic triangulation. Comput. Struct. 36 (1990) 309-319. [CrossRef] [Google Scholar]
  8. N. Boumal, An Introduction to Optimization on Smooth Manifolds. Cambridge University Press (2023). [CrossRef] [Google Scholar]
  9. J.S. Dokken, S.W. Funke, A. Johansson and S. Schmidt, Shape optimization using the finite element method on multiple meshes with Nitsche coupling. SIAM J. Sci. Comput. 41 (2019) A1923-A1948. [CrossRef] [Google Scholar]
  10. G. Dogan, P. Morin, R.H. Nochetto and M. Verani, Discrete gradient flows for shape optimization and applications. Comput. Methods Appl. Mech. Eng. 196 (2007) 3898-3914. [CrossRef] [Google Scholar]
  11. H.C. Elman, D.J. Silvester and A.J. Wathen, Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics. Numerical Mathematics and Scientific Computation. 2nd edn. Oxford University Press (2014). [Google Scholar]
  12. T. Etling, R. Herzog, E. Loayza and G. Wachsmuth, First and second order shape optimization based on restricted mesh deformations. SIAM J. Sci. Comput. 42 (2020) A1200-A1225. [CrossRef] [Google Scholar]
  13. W.B. Gordon, An analytical criterion for the completeness of Riemannian manifolds. Proc. Am,. Math. Soc. 37 (1973) 221-225. [CrossRef] [Google Scholar]
  14. R. Herzog and E. Loayza-Romero, A manifold of planar triangular meshes with complete Riemannian metric. Math. Comput. 92 (2022) 1-50. [CrossRef] [Google Scholar]
  15. J.A. Iglesias, K. Sturm and F. Wechsung, Two-dimensional shape optimization with nearly conformal transformations. SIAM J. Sci. Comput. 40 (2018) A3807-A3830. [CrossRef] [Google Scholar]
  16. J. Koko, Fast MATLAB assembling functions for 2D/3D FEM matrices (2016). [Google Scholar]
  17. J. Koko, Fast MATLAB assembly of FEM matrices in 2D and 3D using cell-array approach. Int. J. Model. Simul. Sci. Comput. 07 (2016) 1650010. [CrossRef] [Google Scholar]
  18. A. Laurain, A level set-based structural optimization code using FEniCS. Struct. Multidiscipl. Optim. 58 (2018) 1311-1334. [CrossRef] [Google Scholar]
  19. J.M. Lee, Introduction to Riemannian Manifolds. Springer International Publishing (2018). [CrossRef] [Google Scholar]
  20. K.E. Loayza Romero, A Discrete Perspective on PDE-Constrained Shape Optimization Problems. Ph.D. thesis, Heidelberg University, 2022. [Google Scholar]
  21. D. Luft and V. Schulz, Pre-shape calculus and its application to mesh quality optimization. Control Cybernet. 50 (2021) 263-301. [CrossRef] [MathSciNet] [Google Scholar]
  22. D. Luft and V. Schulz, Simultaneous shape and mesh quality optimization using pre-shape calculus. Control Cybernet. 50 (2021) 473-520. [CrossRef] [MathSciNet] [Google Scholar]
  23. P. Morin, R.H. Nochetto, M.S. Pauletti and M. Verani, Adaptive finite element method for shape optimization. ESAIM Control Optim. Calc. Var. 18 (2012) 1122-1149. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  24. J. Nocedal and S.J. Wright, Numerical Optimization. 2nd edn. Springer, New York (2006). [Google Scholar]
  25. O. Pironneau, Optimal Shape Design for Elliptic Systems. Springer, New York (1984). [CrossRef] [Google Scholar]
  26. A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations. Springer, Berlin (1994). [CrossRef] [Google Scholar]
  27. V.H. Schulz, M. Siebenborn and K. Welker, Efficient PDE constrained shape optimization based on Steklov-Poincaré type metrics. SIAM J. Optim. 26 (2016) 2800-2819. [CrossRef] [MathSciNet] [Google Scholar]
  28. J.R. Shewchuk, What is a good linear finite element? Interpolation, conditioning, anisotropy, and quality measures, techreport. Department of Electrical Engineering and Computer Sciences, University of Californa at Berkeley, 2002. [Google Scholar]
  29. M. Souli and J. Zolesio, Shape derivative of discretized problems. Comput. Methods Appl. Mech. Eng. 108 (1993) 187-199. [CrossRef] [Google Scholar]
  30. D.N. Wilke, S. Kok and A.A. Groenwold, A quadratically convergent unstructured remeshing strategy for shape optimization. Int. J. Numer. Methods Eng. 65 (2005) 1-17. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.