Open Access
Issue
ESAIM: COCV
Volume 30, 2024
Article Number 10
Number of page(s) 31
DOI https://doi.org/10.1051/cocv/2023069
Published online 28 February 2024
  1. S. Alinhac and P. Gérard, Opérateurs Pseudo-Différentiels et Théorème de Nash-Moser. Editions du CNRS (1991). [CrossRef] [Google Scholar]
  2. C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim. 30 (1992) 1024-1065. [Google Scholar]
  3. N. Burq, Contrôle de l’equation des plaques en presence d’obstacles strictement convexes. Mem. Soc. Math. France (N.S.) 55 (1993) 126. [Google Scholar]
  4. N. Burq, Contrôle de l’equation des ondes dans des ouverts peu réguliers. Asymptotic Anal. 14 (1997) 157-191. [CrossRef] [MathSciNet] [Google Scholar]
  5. N. Burq, B. Dehman and J. Le Rousseau, Measure and continuous vector field at a boundary I: propagation equation and wave observability. Submitted (2023). [Google Scholar]
  6. N. Burq and G. Lebeau, Micro-local approach to the control for the plates equation, in Optimization, Optimal Control and Partial Differential Equations (Ia§i, 1992). Vol. 107 of Internat. Ser. Numer. Math. Birkhauser, Basel (1992) 111-122. [Google Scholar]
  7. N. Burq and M. Zworski, Geometric control in the presence of a black box. J. Am,. Math. Soc. 17 (2004) 443-471. [CrossRef] [Google Scholar]
  8. J.-M. Coron, Control and Nonlinearity. Vol. 136 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2007). [Google Scholar]
  9. B. Dehman and G. Lebeau, Analysis of the HUM control operator and exact controllability for semilinear waves in uniform time. SIAM J. Control Optim. 48 (2009) 521-550. [CrossRef] [MathSciNet] [Google Scholar]
  10. F. Fanelli and E. Zuazua, Weak observability estimates for 1-D wave equations with rough coefficients. Ann. Inst. H. Poincare Anal. Non Linéaire 32 (2015) 245-277. [CrossRef] [MathSciNet] [Google Scholar]
  11. L. Hormander, Uniqueness theorems for second order elliptic differential equations. Commun. Part. Diff. Equ. 8 (1983) 21-64. [CrossRef] [Google Scholar]
  12. L. Hormander, The Analysis of Linear Partial Differential Operators, Vol. III. Springer-Verlag (1985). [Google Scholar]
  13. L. Hormander, The Analysis of Linear Partial Differential Operators, Vol. I, 2nd edn. Springer-Verlag (1990). [Google Scholar]
  14. E. Humbert, Y. Privat and E. Trelat, Observability properties of the homogeneous wave equation on a closed manifold. Commun. Part. Diff. Equ. 44 (2019) 749-772. [CrossRef] [Google Scholar]
  15. I. Lasiecka, J.-L. Lions and R. Triggiani, Non homogeneous boundary value problems for second order hyperbolic operators. J. Math. Pures Appl. 65 (1986) 149-192. [MathSciNet] [Google Scholar]
  16. C. Laurent and M. Leautaud, Quantitative unique continuation for operators with partially analytic coefficients. Application to approximate control for waves. J. Eur. Math. Soc. 21 (2019) 957-1069. [Google Scholar]
  17. G. Lebeau, Contrôle de equation de Schrödinger. J. Math. Pures Appl. 71 (1992) 267-291. [MathSciNet] [Google Scholar]
  18. J. Le Rousseau, G. Lebeau and L. Robbiano, Elliptic Carleman Estimates and Applications to Stabilization and Controllability, Vol. I: Dirichlet Boundary Conditions on Euclidean Space. PNLDE Subseries in Control. Birkhauser (2022). [Google Scholar]
  19. J. Le Rousseau, G. Lebeau and L. Robbiano, Elliptic Carleman Estimates and Applications to Stabilization and Controllability, Vol. II: General Boundary Conditions on Riemnannian Manifolds. PNLDE Subseries in Control. Birkhäuser (2022). [Google Scholar]
  20. J.-L. Lions, Contrôlabilite Exacte, Perturbations et Stabilisation de Systemes Distribues, Vol. 1. Masson, Paris (1988). [Google Scholar]
  21. G. Tenenbaum and M. Tucsnak, Fast and strongly localized observation for the Schrödinger equation. Trans. AMS 361 (2009) 951-977. [Google Scholar]
  22. F. Treves, Topological Vector Spaces, Distributions and Kernels. Academic Press, New York (1967). [Google Scholar]
  23. M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups. Birkhäuser Verlag, Basel (2009). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.