Open Access
Issue |
ESAIM: COCV
Volume 30, 2024
|
|
---|---|---|
Article Number | 62 | |
Number of page(s) | 35 | |
DOI | https://doi.org/10.1051/cocv/2024051 | |
Published online | 10 September 2024 |
- S.-L. Wu and T. Zhou, Diagonalization-based parallel-in-time algorithms for parabolic PDE-constrained optimization problems. ESAIM Control Optim. Calc. Var. 26 (2020) Paper No. 88, 26. [CrossRef] [EDP Sciences] [Google Scholar]
- S.-L. Wu and J. Liu, A parallel-in-time block-circulant preconditioner for optimal control of wave equations. SIAM J. Sci. Comput. 42 (2020) A1510–A1540. [CrossRef] [Google Scholar]
- Y. Maday and E.M. Rønquist. Parallelization in time through tensor-product space-time solvers. C. R. Math. Acad. Sci. Paris 346 (2008) 113–118. [Google Scholar]
- E. McDonald, J. Pestana and A.J. Wathen, Preconditioning and iterative solution of all-at-once systems for evolutionary partial differential equations. SIAM J. Sci. Comput. 40 (2018) A1012–A1033. [CrossRef] [Google Scholar]
- M.J. Gander, J. Liu, S.-L. Wu, X. Yue and T. Zhou, ParaDiag: parallel-in-time algorithms based on the diagonalization technique. arXiv:2005.09158v4 92021). URL: http://arxiv.org/abs/2005.09158. [Google Scholar]
- R.H. Chan, Circulant preconditioners for Hermitian Toeplitz systems. SIAM J. Matrix Anal. Appl. 10 (1989) 542–550. [CrossRef] [MathSciNet] [Google Scholar]
- R.H. Chan and G. Strang, Toeplitz equations by conjugate gradients with circulant preconditioner. SIAM J. Sci. Statist. Comput. 10 (1989) 104–119. [CrossRef] [MathSciNet] [Google Scholar]
- A. Greenbaum, V. Pták and Z. Strakoš, Any nonincreasing convergence curve is possible for GMRES. SIAM J. Matrix Anal. Appl. 17 (1996) 465–469. [CrossRef] [MathSciNet] [Google Scholar]
- J. Liu and Z. Wang, A ROM-accelerated parallel-in-time preconditioner for solving all-at-once systems in unsteady convection-diffusion PDEs. Appl. Math. Comput. 416 (2022) Paper No. 126750, 18. [Google Scholar]
- S.-L. Wu and T. Zhou, Acceleration of the two-level MGRIT algorithm via the diagonalization technique. SIAM J. Sci. Comput. 41 (2019) A3421–A3448. [CrossRef] [Google Scholar]
- M. Stoll and T. Breiten, A low-rank in time approach to PDE-constrained optimization. SIAM J. Sci. Comput. 37 (2015) B1–B29. [CrossRef] [Google Scholar]
- V. Barbu and N.H. Pavel, Periodic optimal control in Hilbert space. Appl. Math. Optim. 33 (1996) 169–188. [CrossRef] [MathSciNet] [Google Scholar]
- A. Bensoussan, G. Da Prato, M.C. Delfour and S.K. Mitter, Representation and Control of Infinite Dimensional Systems. Systems & Control: Foundations & Applications, 2nd edn. Birkhauser Boston Inc., Boston, MA (2007). [Google Scholar]
- M. Hinze, R. Pinnau, M. Ulbrich and S. Ulbrich, Optimization with PDE Constraints. Vol. 23 of Mathematical Modelling, Theory and Applications. Springer Verlag, Heidelberg, New York, Berlin (2009). [Google Scholar]
- J. Jahn, Introduction to the Theory of Nonlinear Optimization, 3rd edn. Springer Verlag, Berlin, Heidelberg, New York (2007). [Google Scholar]
- J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations. Die Grundlehren der mathematischen Wissenschaften, Band 170. Springer-Verlag, New York-Berlin (1971). [CrossRef] [Google Scholar]
- G.H. Golub and C.F. Van Loan, Matrix Computations. Johns Hopkins Studies in the Mathematical Sciences, 4th edn. Johns Hopkins University Press, Baltimore, MD (2013). [Google Scholar]
- M. Benzi, G.H. Golub and J. Liesen, Numerical solution of saddle point problems. Acta Numer. 14 (2005) 1–137. [CrossRef] [MathSciNet] [Google Scholar]
- A.J. Wathen, Preconditioning. Acta Numer. 24 (2015) 329–376. [CrossRef] [Google Scholar]
- S.S. Collis and M. Heinkenschloss, Analysis of the streamline upwind/Petrov Galerkin method applied to the solution of optimal control problems. Technical Report TR02–01, Department of Computational and Applied Mathematics, Rice University, Houston, TX (2002). [Google Scholar]
- M. Heinkenschloss and D. Leykekhman, Local error estimates for SUPG solutions of advection-dominated elliptic linear-quadratic optimal control problems. SIAM J. Numer. Anal. 47 (2010) 4607–4638. [CrossRef] [MathSciNet] [Google Scholar]
- D. Leykekhman, Investigation of commutative properties of discontinuous Galerkin methods in PDE constrained optimal control problems. J. Sci. Comput. 53 (2012) 483–511. [CrossRef] [MathSciNet] [Google Scholar]
- V. Simoncini and D.B. Szyld, Theory of inexact Krylov subspace methods and applications to scientific computing. SIAM J. Sci. Comput. 25 (2003) 454–477. [CrossRef] [MathSciNet] [Google Scholar]
- V. Simoncini and D.B. Szyld, Recent computational developments in Krylov subspace methods for linear systems. Numer. Linear Algebra Appl. 14 (2007) 1–59. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.