Open Access
Issue
ESAIM: COCV
Volume 30, 2024
Article Number 25
Number of page(s) 24
DOI https://doi.org/10.1051/cocv/2024013
Published online 09 April 2024
  1. C. Villani, Optimal Transport: Old and New, Vol. 338. Springer (2009). [CrossRef] [Google Scholar]
  2. F. Santambrogio, Optimal transport for applied mathematicians. Birkäuser, NY 55 (2015) 94. [Google Scholar]
  3. J.J. Kosowsky and A.L. Yuille, The invisible hand algorithm: Solving the assignment problem with statistical physics. Neural Netw. 7 (1994) 477–490. [CrossRef] [Google Scholar]
  4. M. Cuturi, Sinkhorn distances: lightspeed computation of optimal transport. Adv. Neural Inform. Process. Syst. 26 (2013). [Google Scholar]
  5. A. Genevay, L. Chizat, F. Bach, M. Cuturi and G. Peyré, Sample complexity of Sinkhorn divergences, in International Conference on Artificial Intelligence and Statistics. PMLR (2019) 1574–1583. [Google Scholar]
  6. G. Mena and J. Niles-Weed, Statistical bounds for entropic optimal transport: sample complexity and the central limit theorem. Adv. Neural Inform. Process. Syst. 32 (2019). [Google Scholar]
  7. E. del Barrio, A. Gonzalez-Sanz, J.-M. Loubes and J. Niles-Weed, An improved central limit theorem and fast convergence rates for entropic transportation costs. arXiv preprint arXiv:2204.09105 (2022). [Google Scholar]
  8. S. Pal, On the difference between entropic cost and the optimal transport cost. arXiv preprint arXiv:1905.12206 (2019). [Google Scholar]
  9. J. Weed, An explicit analysis of the entropic penalty in linear programming, in Conference On Learning Theory. PMLR (2018) 1841–1855. [Google Scholar]
  10. L. Chizat, P. Roussillon, F. Léger, F.-X. Vialard and G. Peyré, Faster wasserstein distance estimation with the sinkhorn divergence. Adv. Neural Inform. Process. Syst. (2020). [Google Scholar]
  11. G. Conforti and L. Tamanini, A formula for the time derivative of the entropic cost and applications. J. Funct. Anal. 280 (2021) 108964. [CrossRef] [Google Scholar]
  12. G. Carlier, P. Pegon and L. Tamanini, Convergence rate of general entropic optimal transport costs (2022). [Google Scholar]
  13. S. Eckstein and M. Nutz, Convergence rates for regularized optimal transport via quantization (2022). [Google Scholar]
  14. E. Schrödinger, Sur la théorie relativiste de l’électron et l’interprétation de la mécanique quantique. Ann. Inst. Henri Poincaré 2 (1932) 269–310. [MathSciNet] [Google Scholar]
  15. C. Léonard, From the Schrödinger problem to the Monge–Kantorovich problem. J. Funct. Anal. 262 (2012) 1879–1920. [CrossRef] [MathSciNet] [Google Scholar]
  16. J. Feydy, T. Séjourné, F.-X. Vialard, S.-i. Amari, A. Trouvé and G. Peyré, Interpolating between optimal transport and MMD using Sinkhorn Divergences, in International Conference on Artificial Intelligence and Statistics. PMLR (2019) 2681–2690. [Google Scholar]
  17. M. Laborde, Nonlinear systems coupled through multi-marginal transport problems. Eur. J. Appl. Math. 31 (2020) 450–469. [CrossRef] [Google Scholar]
  18. C. Barilla, G. Carlier and J.-M. Lasry, A mean field game model for the evolution of cities. J. Dyn. Games 8 (2021) 299–329. [CrossRef] [MathSciNet] [Google Scholar]
  19. L. Chizat, S. Zhang, M. Heitz and G. Schiebinger, Trajectory inference via mean-field langevin in path space. Adv. Neural Inform. Process. Syst., in press. 2022. [Google Scholar]
  20. L. Chizat, Doubly regularized entropic wasserstein barycenters. arXiv preprint arXiv:2303.11844 (2023). [Google Scholar]
  21. A. Delalande and Q. Merigot, Quantitative stability of optimal transport maps under variations of the target measure. arXiv preprint arXiv:2103.05934 (2021). [Google Scholar]
  22. R.J. Berman, Convergence rates for discretized Monge–Ampère equations and quantitative stability of optimal transport. Found. Computat. Math. 21 (2021) 1099–1140. [CrossRef] [Google Scholar]
  23. N. Gigli, On hölder continuity-in-time of the optimal transport map towards measures along a curve. Proc. Edinb. Math. Soc. 54 (2011) 401–409. [CrossRef] [MathSciNet] [Google Scholar]
  24. G. Carlier and M. Laborde, A differential approach to the multi-marginal Schrödinger system. SIAM J. Math. Anal. 52 (2020) 709–717. [CrossRef] [MathSciNet] [Google Scholar]
  25. Z. Goldfeld, K. Kato, G. Rioux and R. Sadhu, Limit theorems for entropic optimal transport maps and the sinkhorn divergence. arXiv preprint arXiv:2207.08683 (2022). [Google Scholar]
  26. S. Eckstein and M. Nutz, Quantitative stability of regularized optimal transport and convergence of Sinkhorn’s algorithm. arXiv preprint arXiv:2110.06798 (2021). [Google Scholar]
  27. M. Nutz and J. Wiesel, Stability of Schrödinger potentials and convergence of Sinkhorn’s algorithm. arXiv preprint arXiv:2201.10059 (2022). [Google Scholar]
  28. P. Ghosal, M. Nutz and E. Bernton, Stability of entropic optimal transport and Schrodinger bridges. arXiv preprint arXiv:2106.03670 (2021). [Google Scholar]
  29. G. Deligiannidis, V. De Bortoli and A. Doucet, Quantitative uniform stability of the iterative proportional fitting procedure. arXiv preprint arXiv:2108.08129 (2021). [Google Scholar]
  30. H. Queffélec and C. Zuily, Analyse pour l’agrégation-Agrégation/Master Mathématiques. Dunod (2020). [Google Scholar]
  31. M. Nutz, Introduction to entropic optimal transport (2021). [Google Scholar]
  32. S. Di Marino and A. Gerolin, An optimal transport approach for the Schrodinger bridge problem and convergence of Sinkhorn algorithm. J. Sci. Comput. 85 (2020) 1–28. [CrossRef] [MathSciNet] [Google Scholar]
  33. P. Rigollet and A.J. Stromme, On the sample complexity of entropic optimal transport. arXiv preprint arXiv:2206.13472 (2022). [Google Scholar]
  34. A. Gonzalez-Sanz, J.-M. Loubes and J. Niles-Weed, Weak limits of entropy regularized optimal transport; potentials, plans and divergences. arXiv preprint arXiv:2207.07427 (2022). [Google Scholar]
  35. Ha. Brézis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Vol. 2. Springer (2011). [CrossRef] [Google Scholar]
  36. J. Dieudonné, Foundations of Modern Analysis. Read Books Ltd (2011). [Google Scholar]
  37. R.J. McCann, A convexity principle for interacting gases. Adv. Mathem. 128 (1997) 153–179. [CrossRef] [Google Scholar]
  38. L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows: In Metric Spaces and In the Space of Probability Measures. Springer Science & Business Media (2005). [Google Scholar]
  39. L. Chizat, Mean-field langevin dynamics : Exponential convergence and annealing. Trans. Mach. Learn. Res. (2022). [Google Scholar]
  40. A. Nitanda, D. Wu and T. Suzuki, Convex analysis of the mean field langevin dynamics, in International Conference on Artificial Intelligence and Statistics. PMLR (2022) 9741–9757. [Google Scholar]
  41. M. Ledoux, Logarithmic Sobolev inequalities for unbounded spin systems revisited. Séminaire de Probabilités XXXV (2001) 167–194. [CrossRef] [Google Scholar]
  42. R. Holley and D. Stroock, Logarithmic Sobolev inequalities and stochastic Ising models. J. Stat. Phys. 46 (1987) 1159–1194. [CrossRef] [Google Scholar]
  43. F. Otto and C. Villani, Generalization of an inequality by talagrand and links with the logarithmic sobolev inequality. J. Funct. Anal. 173 (2000) 361–400. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.