Open Access
Issue
ESAIM: COCV
Volume 30, 2024
Article Number 24
Number of page(s) 24
DOI https://doi.org/10.1051/cocv/2024010
Published online 09 April 2024
  1. L. Hu, R. Vazquez, F. Di Meglio and M. Krstic, Boundary exponential stabilization of 1-dimensional inhomogeneous quasi-linear hyperbolic systems. SIAM J. Control Optim. 57 (2019) 963–998. [CrossRef] [MathSciNet] [Google Scholar]
  2. G. Bastin, J.-M. Coron and S.O. Tamasoiu, Stability of linear density-flow hyperbolic systems under PI boundary control. Automatica J. IFAC 53 (2015) 37–42. [CrossRef] [MathSciNet] [Google Scholar]
  3. J.-M. Coron and G. Bastin, Dissipative boundary conditions for one-dimensional quasi-linear hyperbolic systems: Lyapunov stability for the C1 -norm. SIAM J. Control Optim. 53 (2015) 1464–1483. [CrossRef] [MathSciNet] [Google Scholar]
  4. J.-M. Coron, G. Bastin and B. d’Andréa Novel, Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems. SIAM J. Control Optim. 47 (2008) 1460–1498. [Google Scholar]
  5. J.-M. Coron, S. Ervedoza, S.S. Ghoshal, O. Glass and V. Perrollaz, Dissipative boundary conditions for 2 x 2 hyperbolic systems of conservation laws for entropy solutions in BV. J. Diff. Equ. 262 (2017) 1–30. [CrossRef] [Google Scholar]
  6. T. Li, B. Rao and Z. Wang, Exact boundary controllability and observability for first order quasilinear hyperbolic systems with a kind of nonlocal boundary conditions. Discrete Contin. Dyn. Syst. 28 (2010) 243–257. [CrossRef] [MathSciNet] [Google Scholar]
  7. M. Slemrod, Boundary feedback stabilization for a quasilinear wave equation, in Control Theory for Distributed Parameter Systems and Applications (Vorau, 1982). Vol. 54 of Lect. Notes Control Inf. Sci.. Springer, Berlin (1983) 221–237. [Google Scholar]
  8. J.-M. Coron, Control and Nonlinearity. Vol. 136 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2007). [Google Scholar]
  9. M. Dick, M. Gugat and G. Leugering, Classical solutions and feedback stabilization for the gas flow in a sequence of pipes. Netw. Heterog. Media 5 (2010) 691–709. [CrossRef] [MathSciNet] [Google Scholar]
  10. M. Gugat, G. Leugering and K. Wang, Neumann boundary feedback stabilization for a nonlinear wave equation: a strict H2-Lyapunov function. Math. Control Relat. Fields 7 (2017) 419–448. [CrossRef] [MathSciNet] [Google Scholar]
  11. F. Ancona and A. Marson, Asymptotic stabilization of systems of conservation laws by controls acting at a single boundary point, in Control Methods in PDE-Dynamical Systems. Vol. 426 of Contemp. Math., American Mathematical Society, Providence, RI (2007) 1–43. [CrossRef] [Google Scholar]
  12. A. Bressan and G.M. Coclite, On the boundary control of systems of conservation laws. SIAM J. Control Optim. 41 (2002) 607–622. [CrossRef] [MathSciNet] [Google Scholar]
  13. T. Li, Global Classical Solutions for Quasilinear Hyperbolic Systems. Vol. 32 of RAM: Research in Applied Mathematics. Masson, Paris; John Wiley & Sons, Ltd., Chichester (1994). [Google Scholar]
  14. V. Perrollaz, Exact controllability of scalar conservation laws with an additional control in the context of entropy solutions. SIAM J. Control Optim. 50 (2012) 2025–2045. [CrossRef] [MathSciNet] [Google Scholar]
  15. C. Prieur, J. Winkin and G. Bastin, Robust boundary control of systems of conservation laws. Math. Control Signals Syst. 20 (2008) 173–197. [CrossRef] [Google Scholar]
  16. J.-M. Coron, B. d’Andréa Novel and G. Bastin, A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws. IEEE Trans. Automat. Control 52 (2007) 2–11. [CrossRef] [MathSciNet] [Google Scholar]
  17. A. Diagne, G. Bastin and J.-M. Coron, Lyapunov exponential stability of 1-D linear hyperbolic systems of balance laws. Automatica J. IFAC 48 (2012) 109–114. [CrossRef] [MathSciNet] [Google Scholar]
  18. M. Dick, M. Gugat and G. Leugering, A strict H1 -Lyapunov function and feedback stabilization for the isothermal Euler equations with friction. Numer. Algebra Control Optim. 1 (2011) 225–244. [Google Scholar]
  19. M. Gugat and M. Dick, Time-delayed boundary feedback stabilization of the isothermal Euler equations with friction. Math. Control Relat. Fields 1 (2011) 469–491. [CrossRef] [MathSciNet] [Google Scholar]
  20. A. Tchousso, T. Besson and C.-Z. Xu, Exponential stability of distributed parameter systems governed by symmetric hyperbolic partial differential equations using Lyapunov’s second method. ESAIM Control Optim. Calc. Var. 15 (2009) 403–425. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  21. C.-Z. Xu and G. Sallet, Exponential stability and transfer functions of processes governed by symmetric hyperbolic systems. ESAIM Control Optim. Calc. Var. 7 (2002) 421–442. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  22. J.-M. Coron, L. Hu, G. Olive and P. Shang, Boundary stabilization in finite time of one-dimensional linear hyperbolic balance laws with coefficients depending on time and space. J. Diff. Equ. 271 (2021) 1109–1170. [CrossRef] [Google Scholar]
  23. H. Anfinsen and O.M. Aamo, Adaptive stabilization of 2 × 2 linear hyperbolic systems with an unknown boundary parameter from collocated sensing and control. IEEE Trans. Automatic Control 62 (2017) 6237–6249. [CrossRef] [MathSciNet] [Google Scholar]
  24. H. Anfinsen and O.M. Aamo, Adaptive control of linear 2 x 2 hyperbolic systems. Automatica J. IFAC 87 (2018) 69–82. [CrossRef] [MathSciNet] [Google Scholar]
  25. G. Bastin and J.-M. Coron, Stability and Boundary Stabilization of 1-D Hyperbolic Systems. Vol. 88 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser/Springer, Cham (2016). Subseries in Control. [Google Scholar]
  26. G. Bastin and J.-M. Coron, On boundary feedback stabilization of non-uniform linear 2 x 2 hyperbolic systems over a bounded interval. Syst. Control Lett. 60 (2011) 900–906. [CrossRef] [Google Scholar]
  27. M. Gugat and S. Gerster, On the limits of stabilizability for networks of strings. Syst. Control Lett. 131 (2019) 104494. [CrossRef] [Google Scholar]
  28. M. Lichtner, Spectral mapping theorem for linear hyperbolic systems. Proc. Am. Math. Soc. 136 (2008) 2091–2101. [CrossRef] [Google Scholar]
  29. K. Fritzsche and H. Grauert, From Holomorphic Functions to Complex Manifolds. Vol. 213 of Graduate Texts in Mathematics. Springer-Verlag, New York (2002). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.