Open Access
Issue
ESAIM: COCV
Volume 30, 2024
Article Number 40
Number of page(s) 25
DOI https://doi.org/10.1051/cocv/2024029
Published online 03 May 2024
  1. A.V. Fursikov and O.Yu. Imanuvilov, Controllability of Evolution Equations, Vol. 34 of Lecture Notes Series. Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul (1996). [Google Scholar]
  2. G. Lebeau and L. Robbiano, Contrôle exact de l’équation de la chaleur. Comm. Partial Diff. Equ. 20 (1995) 335–356. [CrossRef] [Google Scholar]
  3. J.-L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 2, Vol. 9 of Recherches en Mathématiques Appliquées [Research in Applied Mathematics]. Masson, Paris (1988). [Google Scholar]
  4. H.O. Fattorini and D.L. Russell, Exact controllability theorems for linear parabolic equations in one space dimension. Arch. Rational Mech. Anal. 43 (1971) 272–292. [MathSciNet] [Google Scholar]
  5. D.L. Russell, Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions. SIAM Rev. 20 (1978) 639–739. [Google Scholar]
  6. J. Le Rousseau and G. Lebeau, On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations. ESAIM Control Optim. Calc. Var. 18 (2012) 712–747. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  7. J.-M. Coron and E. Trélat, Global steady-state controllability of one-dimensional semilinear heat equations. SIAM J. Control Optim. 43 (2004) 549–569. [Google Scholar]
  8. S. Ervedoza and E. Zuazua, Sharp observability estimates for heat equations. Arch. Ration. Mech. Anal. 202 (2011) 975–1017. [CrossRef] [MathSciNet] [Google Scholar]
  9. E. Fernández-Cara, S. Guerrero, O. Yu. Imanuvilov and J.-P. Puel, Local exact controllability of the Navier–Stokes system. J. Math. Pures Appl. 83 (2004) 1501–1542. [CrossRef] [MathSciNet] [Google Scholar]
  10. E. Fernández-Cara and E. Zuazua, The cost of approximate controllability for heat equations: the linear case. Adv. Diff. Equ. 5 (2000) 465–514. [Google Scholar]
  11. E. Fernández-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 17 (2000) 583–616. [Google Scholar]
  12. N. Burq and I. Moyano, Propagation of smallness and control for heat equations. J. Eur. Math. Soc., to appear. [Google Scholar]
  13. A. Logunov, Nodal sets of Laplace eigenfunctions: polynomial upper estimates of the Hausdorff measure. Ann. Math. 187 (2018) 221–239. [MathSciNet] [Google Scholar]
  14. A. Logunov, Nodal sets of Laplace eigenfunctions: proof of Nadirashvili’s conjecture and of the lower bound in Yau’s conjecture. Ann. Math. 187 (2018) 241–262. [MathSciNet] [Google Scholar]
  15. A. Logunov and E. Malinnikova, Quantitative propagation of smallness for solutions of elliptic Equations, in Proceedings of the International Congress of Mathematicians – Rio de Janeiro 2018. Vol. III. Invited Lectures. World Sci. Publ., Hackensack, NJ (2018) 2391–2411. [Google Scholar]
  16. T.I. Seidman, Two results on exact boundary control of parabolic equations. Appl. Math. Optim. 11 (1984) 145–152. [CrossRef] [MathSciNet] [Google Scholar]
  17. E.N. Güichal, A lower bound of the norm of the control operator for the heat equation. J. Math. Anal. Appl. 110 (1985) 519–527. [CrossRef] [MathSciNet] [Google Scholar]
  18. L. Miller, Geometric bounds on the growth rate of null-controllability cost for the heat equation in small time. J. Diff. Equ. 204 (2004) 202–226. [CrossRef] [Google Scholar]
  19. L. Miller, A direct Lebeau–Robbiano strategy for the observability of heat-like semigroups. Discrete Contin. Dyn. Syst. Ser. B 14 (2010) 1465–1485. [MathSciNet] [Google Scholar]
  20. I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories. I, Vol. 74 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (2000). [Google Scholar]
  21. V. Barbu and G. Wang, Feedback stabilization of semilinear heat equations. Abstr. Appl. Anal. (2003) 697–714. [CrossRef] [Google Scholar]
  22. V. Barbu, I. Lasiecka and R. Triggiani, Tangential boundary stabilization of Navier–Stokes equations. Mem. Amer. Math. Soc. 181 (2006) x+128. [Google Scholar]
  23. V. Barbu and R. Triggiani, Internal stabilization of Navier–Stokes equations with finite-dimensional controllers. Indiana Univ. Math. J. 53 (2004) 1443–1494. [CrossRef] [MathSciNet] [Google Scholar]
  24. J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations. Translated from the French by S.K. Mitter. Die Grundlehren der mathematischen Wissenschaften, Band 170. Springer-Verlag, New York-Berlin (1971). [CrossRef] [Google Scholar]
  25. R. Buffe and K.D. Phung, A spectral inequality for degenerate operators and applications. C. R. Math. Acad. Sci. Paris 356 (2018) 1131–1155. [CrossRef] [MathSciNet] [Google Scholar]
  26. K. Dang Phung, G. Wang and Y. Xu, Impulse output rapid stabilization for heat equations. J. Diff. Equ. 263 (2017) 5012–5041. [CrossRef] [Google Scholar]
  27. S. Huang, G. Wang and M. Wang, Characterizations of stabilizable sets for some parabolic equations in ℝn. J. Diff. Equ. 272 (2021) 255–288. [CrossRef] [Google Scholar]
  28. M. Krstic and A. Smyshlyaev, Boundary Control of PDEs, Vol. 16 of Advances in Design and Control. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2008). [Google Scholar]
  29. J.-M. Coron, Stabilization of control systems and nonlinearities, in Proceedings of the 8th International Congress on Industrial and Applied Mathematics. Higher Ed. Press, Beijing (2015) 17–40. [Google Scholar]
  30. J.-M. Coron and Q. Lü, Local rapid stabilization for a Korteweg–de Vries equation with a Neumann boundary control on the right. J. Math. Pures Appl. 102 (2014) 1080–1120. [CrossRef] [MathSciNet] [Google Scholar]
  31. J.-M. Coron, L. Gagnon and M. Morancey, Rapid stabilization of a linearized bilinear 1-D Schrodinger equation. J. Math. Pures Appl. 115 (2018) 24–73. [CrossRef] [MathSciNet] [Google Scholar]
  32. J.-M. Coron, A. Hayat, S. Xiang and C. Zhang, Stabilization of the linearized water tank system. Arch. Ration. Mech. Anal. 244 (2022) 1019–1097. [CrossRef] [MathSciNet] [Google Scholar]
  33. L. Gagnon, A. Hayat, S. Xiang and C. Zhang, Fredholm transformation on Laplacian and rapid stabilization for the heat equation. J. Funct. Anal. 283 (2022) Paper No. 109664, 67. [CrossRef] [Google Scholar]
  34. L. Gagnon, P. Lissy and S. Marx, A Fredholm transformation for the rapid stabilization of a degenerate parabolic equation. SIAM J. Control Optim. 59 (2021) 3828–3859. [CrossRef] [MathSciNet] [Google Scholar]
  35. C. Zhang, Internal rapid stabilization of a 1-D linear transport equation with a scalar feedback. Preprint (2018). [Google Scholar]
  36. J.-M. Coron and H.-M. Nguyen, Null controllability and finite time stabilization for the heat equations with variable coefficients in space in one dimension via backstepping approach. Arch. Ration. Mech. Anal. 225 (2017) 993–1023. [CrossRef] [MathSciNet] [Google Scholar]
  37. J.-M. Coron and S. Xiang, Small-time global stabilization of the viscous Burgers equation with three scalar controls. J. Math. Pures Appl. 151 (2021) 212–256. [CrossRef] [MathSciNet] [Google Scholar]
  38. S. Xiang, Small-time local stabilization of the two-dimensional incompressible Navier–Stokes equations. Ann. Inst. H. Poincaré C Anal. Non Linéaire 40 (2023) 1487–1511. [CrossRef] [MathSciNet] [Google Scholar]
  39. K. Beauchard and K. Pravda-Starov, Null-controllability of hypoelliptic quadratic differential equations. J. Ec. Polytech. Math. 5 (2018) 1–43. [CrossRef] [Google Scholar]
  40. J.-M. Coron, Control and nonlinearity, Vol. 136 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2007). [Google Scholar]
  41. H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext. Springer, New York (2011). [Google Scholar]
  42. H. Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung). Math. Ann. 71 (1912) 441–479. [CrossRef] [MathSciNet] [Google Scholar]
  43. D. Jerison and G. Lebeau, Nodal sets of sums of eigenfunctions, in Harmonic Analysis and Partial Differential Equations (Chicago, IL, 1996). Chicago Lectures in Mathematics. University Of Chicago Press, Chicago, IL (1999) 223–239. [Google Scholar]
  44. J. Le Rousseau and L. Robbiano, Spectral inequality and resolvent estimate for the bi-Laplace operator. J. Eur. Math. Soc. 22 (2020) 1003–1094. [Google Scholar]
  45. J. Apraiz, L. Escauriaza, G. Wang and C. Zhang, Observability inequalities and measurable sets. J. Eur. Math. Soc. 16 (2014) 2433–2475. [CrossRef] [MathSciNet] [Google Scholar]
  46. G. Wang, M. Wang, C. Zhang and Y. Zhang, Observable set, observability, interpolation inequality and spectral inequality for the heat equation in ℝn. J. Math. Pures Appl. 126 (2019) 144–194. [CrossRef] [MathSciNet] [Google Scholar]
  47. F.W. Chaves-Silva and G. Lebeau, Spectral inequality and optimal cost of controllability for the Stokes system. ESAIM Control Optim. Calc. Var. 22 (2016) 1137–1162. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  48. J.-M. Coron and E. Trélat, Global steady-state stabilization and controllability of 1D semilinear wave equations. Commun. Contemp. Math. 8 (2006) 535–567. [CrossRef] [Google Scholar]
  49. E. Trélat, Stabilization of semilinear PDEs, and uniform decay under discretization, in Evolution Equations: Long Time Behavior and Control, Vol. 439 of London Math. Soc. Lecture Note Ser.. Cambridge University Press, Cambridge (2018) 31–76. [Google Scholar]
  50. P. Alphonse and J. Martin, Stabilization and approximate null-controllability for a large class of diffusive equations from thick control supports. ESAIM Control Optim. Calc. Var. 28 (2022) Paper No. 16, 30. [CrossRef] [EDP Sciences] [Google Scholar]
  51. J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications. Vol. III. Springer-Verlag, New York-Heidelberg (1973). Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 183. [CrossRef] [Google Scholar]
  52. S. Xiang, Small-time local stabilization for a Korteweg–de Vries equation. Syst. Control Lett. 111 (2018) 64–69. [CrossRef] [Google Scholar]
  53. S. Xiang, Null controllability of a linearized Korteweg–de Vries equation by backstepping approach. SIAM J. Control Optim. 57 (2019) 1493–1515. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.