Open Access
Issue |
ESAIM: COCV
Volume 30, 2024
|
|
---|---|---|
Article Number | 18 | |
Number of page(s) | 33 | |
DOI | https://doi.org/10.1051/cocv/2024004 | |
Published online | 07 March 2024 |
- H.M. Amman and D.A. Kendrick, Computing the steady state of linear quadratic optimization models with rational expectations. Econ. Lett. 58 (1998) 185–191. [Google Scholar]
- R.S. Burachik, C.Y. Kaya and S.N. Majeed, A duality approach for solving control-constrained linear-quadratic optimal control problems. SIAM J. Control Optim. 52 (2014) 1771–1782. [Google Scholar]
- C. Büskens and H. Maurer, SQP-methods for solving optimal control problems with control and state constraints: adjoint variables, sensitivity analysis and real-time control. J. Comput. Appl. Math. 120 (2000) 85–108. [Google Scholar]
- B. Christiansen, H. Maurer and O. Zirn, Optimal control of machine tool manipulators, in edited by M. Diehl, Recent Advances in Optimization and its Applications in Engineering. Springer-Verlag, Berlin, Heidelberg (2010) 451–460. [CrossRef] [Google Scholar]
- B. Kugelmann and H.J. Pesch, New general guidance method in constrained optimal control. I. Numerical method. J. Optim. Theory Appl. 67 (1990) 421–435. [Google Scholar]
- H. Maurer and H.J. Oberle, Second order sufficient conditions for optimal control problems with free final time: The Riccati approach. SIAM J. Control Optim. 41 (2003) 380–403. [Google Scholar]
- T. Mouktonglang, Innate immune response via perturbed LQ-control problem. Adv. Stud. Biol. 3 (2011) 327–332. [Google Scholar]
- M. Athans and P. Falb, Optimal Control: An Introduction to the Theory and Its Applications. McGraw-Hill, Inc., New York (1966). [Google Scholar]
- D.E. Kirk, Optimal Control Theory: An Introduction. Prentice-Hall, Inc., New Jersey (1970). [Google Scholar]
- J. Klamka, Controllability and Minimum Energy Control. Springer, Cham, Switzerland (2019). [CrossRef] [Google Scholar]
- S.P. Sethi, Optimal Control Theory: Applications to Management Science and Economics, 1st edn. Springer, Cham, Switzerland (2019). [CrossRef] [Google Scholar]
- H.H. Bauschke and V.R. Koch, Projection Methods: Swiss Army Knives for Solving Feasibility and Best Approximation problems with Halfspaces. Infinite Products of Operators and Their Applications (2012) 1–40. [Google Scholar]
- F.J. Aragón Artacho, J.M. Borwein and M.K. Tam, Douglas–Rachford feasibility methods for matrix completion problems. ANZIAM J. 55 (2014) 299–326. [MathSciNet] [Google Scholar]
- S. Gravel and V. Elser, Divide and concur: a general approach to constraint satisfaction. Phys. Rev. E 78 (2008) 036706. [CrossRef] [PubMed] [Google Scholar]
- H.H. Bauschke, 8 Queens, Sudoku, and Projection Methods. https://carma.newcastle.edu.au/resources/jon/Preprints/Books/CUP/Material/Lions-Mercier/Heinz_Bauschke.pdf, 2008. [Google Scholar]
- F.J. Aragón Artacho, R. Campoy and V. Elser, An enhanced formulation for solving graph coloring problems with the Douglas–Rachford algorithm. J. Glob. Optim. 77 (2020) 383–403. [CrossRef] [Google Scholar]
- Y. Censor, M.D. Altschuler and W.D. Powlis, On the use of Cimminos simultaneous projections method for computing a solution of the inverse problem in radiation therapy treatment planning. Inverse Probl. 4 (1988) 607–623. [CrossRef] [Google Scholar]
- B. O’Donoghue, G. Stathopoulos and S. Boyd, A splitting method for optimal control. IEEE Trans. Contr. Syst. Tech. 21 (2013) 2432–2442. [CrossRef] [Google Scholar]
- H.H. Bauschke, R.S. Burachik and C.Y. Kaya, Constraint splitting and projection methods for optimal control of double integrator, in Splitting Algorithms, Modern Operator Theory, and Applications. Springer (2019) 45–68. [CrossRef] [Google Scholar]
- R. Fourer, D.M. Gay and B.W. Kernighan, AMPL: A Modeling Language for Math. Progr., 2nd edn. Brooks/Cole Publishing Company/Cengage Learning (2003). [Google Scholar]
- A. Wachter and L.T. Biegler, On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Math. Progr. 106 (2006) 25–57. [CrossRef] [Google Scholar]
- V.G. Boltyanskii, R.V. Gamkrelidze, E.F. Mishchenko and L.S. Pontryagin, The Mathematical Theory of Optimal Processes. John Wiley & Sons, New York (1962). [Google Scholar]
- M.R. Hestenes, Calculus of Variations and Optimal Control Theory. John Wiley & Sons, New York (1966). [Google Scholar]
- R.B. Vinter, Optimal Control. Birkhäuser, Boston (2000). [Google Scholar]
- B.S. Mordukhovich, Variational Analysis and Generalized Differentiation II: Applications. Springer-Verlag, Berlin, Heidelberg (2006). [Google Scholar]
- F. Clarke, Functional Analysis, Calculus of Variations and Optimal Control. Springer-Verlag, London (2013). [CrossRef] [Google Scholar]
- W.J. Rugh, Linear System Theory, 2nd edn. Pearson (1995). [Google Scholar]
- R.L. Borrelli and C.S. Coleman, Differential Equations: A Modeling Perspective, 2nd edn. John Wiley and Sons (2004). [Google Scholar]
- H.H. Bauschke and P.L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces. 2nd edn. Springer (2017). [CrossRef] [Google Scholar]
- J. Douglas and H.H. Rachford, On the numerical solution of heat conduction problems in two and three space variables. Trans. Am. Math. Soc. 82 (1956) 421–439. [CrossRef] [Google Scholar]
- P.-L. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16 (1979) 964–979. [CrossRef] [MathSciNet] [Google Scholar]
- J. Eckstein and D.P. Bertsekas, On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Progr., Ser. A 55 (1992) 293–318. [Google Scholar]
- B.F. Svaiter, On weak convergence of the Douglas-Rachford method. SIAM J. Control Optim,. 49 (2011) 280–287. [CrossRef] [Google Scholar]
- H.H. Bauschke and W.M. Moursi, On the Douglas–Rachford algorithm. Math. Program., Ser. A 164 (2017) 263–284. [CrossRef] [Google Scholar]
- M.M. Alves, J. Eckstein, M. Geremia and J.G. Melo, Relative-error inertial-relaxed inexact versions of Douglas–Rachford and ADMM splitting algorithms. Comput. Optim. Appl. 75 (2020) 389–422. [CrossRef] [MathSciNet] [Google Scholar]
- B.F. Svaiter, A weakly convergent fully inexact Douglas–Rachford method with relative error tolerance. ESAIM. Control Optim. Calc. Var. 25 (2019). [Google Scholar]
- M.M. Alves and M. Geremia, Iteration complexity of an inexact Douglas–Rachford method and of a Douglas–RachfordTsengs F–B four-operator splitting method for solving monotone inclusions. Numer. Algorithms 82 (2019) 263–295. [CrossRef] [MathSciNet] [Google Scholar]
- H.H. Bauschke and W.M. Moursi, On the Douglas–Rachford algorithm for solving possibly inconsistent optimization problems. Math. Oper. Res. https://doi.org/10.1287/moor.2022.1347. [Google Scholar]
- W.W. Hager, Runge–Kutta methods in optimal control and the transformed adjoint system. Numer. Math. 87 (2000) 247–282. [CrossRef] [MathSciNet] [Google Scholar]
- R.S. Burachik, B.I. Caldwell and C.Y. Kaya, Projection methods for control-constrained minimum-energy control problems. arXiv:2210.17279v1, https://arxiv.org/abs/2210.17279. [Google Scholar]
- H.H. Bauschke and J.M. Borwein, On projection algorithms for solving convex feasibility problems. SIAM Rev. 38 (1996) 367426. [CrossRef] [MathSciNet] [Google Scholar]
- J. von Neumann, On rings of operators. Reduction theory. Ann. Math. 50 (1949) 401–485. [CrossRef] [MathSciNet] [Google Scholar]
- J.P. Boyle and R.L. Dykstra, A method for finding projections onto the intersection of convex sets in Hilbert spaces, in Advances in Order Restricted Statistical Inference, Vol. 37 of Lecture Notes in Statistics. Springer (1986) 28–47. [Google Scholar]
- F.J. Aragón Artacho and R. Campoy, A new projection method for finding the closest point in the intersection of convex sets. Comput. Optim. Appl. 69 (2018) 99–132. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.