Open Access
Volume 30, 2024
Article Number 17
Number of page(s) 28
Published online 07 March 2024
  1. M. Bardi and I.C. Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Birkhäuser, Boston (1997). [CrossRef] [Google Scholar]
  2. R.J. Elliot and N.J. Kalton, The Existence of Value in Differential Games. American Mathematical Society, Providence, Rhode Island (1972). [Google Scholar]
  3. M.G. Crandall and P.L. Lions, Hamilton–Jacobi equations in infinite dimensions. I. Uniqueness of viscosity solutions. J. Funct. Anal. 62 (1985) 379–396. [CrossRef] [MathSciNet] [Google Scholar]
  4. M.G. Crandall and P.L. Lions, Hamilton–Jacobi equations in infinite dimensions. II. Existence of viscosity solutions. J. Funct. Anal. 65 (1986) 368–405. [CrossRef] [MathSciNet] [Google Scholar]
  5. R. Capuani and A. Marigonda, Constrained mean field games equilibria as fixed point of random lifting of set-valued maps. IFAC-PapersOnLine 55 (2022) 188–185. [Google Scholar]
  6. P. Cardaliaguet and M. Quincampoix, Deterministic differential games under probability knowledge of initial condition. Int. Game Theory Rev. 10 (2008) 1–16. [CrossRef] [MathSciNet] [Google Scholar]
  7. G. Cavagnari, A. Marigonda and M. Quincampoix, Compatibility of state constraints and dynamics for multiagent control systems. J. Evol. Equ. 21 (2021) 4491–4537. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  8. A. Cosso and H. Pham, Zero-sum stochastic differential games of generalized McKean-Vlasov type. J. Math. Pures Appl. 129 (2019) 180–212. [CrossRef] [MathSciNet] [Google Scholar]
  9. W. Gangbo and A. Tudorascu, On differentiability in the Wasserstein space and well-posedness for Hamilton–Jacobi equations. J. Math. Pures Appl. 125 (2019) 119–174. [CrossRef] [MathSciNet] [Google Scholar]
  10. C. Jimenez, A. Marigonda and M. Quincampoix, Optimal control of multiagent systems in the Wasserstein space. Calc. Variations Partial Diff. Equ. 59 (2020) 58. [CrossRef] [Google Scholar]
  11. A. Marigonda and M. Quincampoix, Mayer control problem with probabilistic uncertainty on initial positions. J. Diff. Equ. 264 (2018) 3212–3252. [CrossRef] [Google Scholar]
  12. J. Moon and T. Basar, Zero-sum differential games on the Wasserstein space. Commun. Assoc. Inform. Syst. 21 (2021) 219–251. [CrossRef] [Google Scholar]
  13. L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows: In Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics. ETH Zurich, Birkhäuser, Basel (2005). [Google Scholar]
  14. Y. Achdou, M. Bardi and M. Cirant, Mean field games models of segregation. Math. Models Methods Appl. Sci. 27 (2017) 75–113. [CrossRef] [MathSciNet] [Google Scholar]
  15. Y. Averboukh, Krasovskii-Subbotin approach to mean field type differential games. Dyn. Games Appl. 9 (2018) 573–593. [Google Scholar]
  16. R. Carmona, K. Hamidouche, M. Laurière and Z. Tan, Linear-quadratic zero-sum mean-field type games: Optimality conditions and policy optimization. J. Dyn. Games 8 (2021) 403–443. [CrossRef] [MathSciNet] [Google Scholar]
  17. M. Cirant and G. Verzini, Bifurcation and segregation in quadratic two-populations mean field games systems. ESAIM: Control Optim,. Calculus Variations 23 (2017) 1145–1177. [CrossRef] [EDP Sciences] [Google Scholar]
  18. R. Colombo and M. Garavello, Hyperbolic consensus games. Commun. Math. Sci. 17 (2019) 1005–1024. [CrossRef] [MathSciNet] [Google Scholar]
  19. H.V. Tran, A note on nonconvex mean field games. Minimax Theory Applic. 3 (2018) 323–336. [Google Scholar]
  20. G. Ibragimov, M. Ferrara, M. Ruziboev and B.A. Pansera, Linear evasion differential game of one evader and several pursuers with integral constraints. Int. J. Game Theory 50 (2021) 729–750. [CrossRef] [Google Scholar]
  21. G. Ibragimov, R. Kazimarova and B.A. Pansera, Evasion differential game of multiple pursuers and one evader for an infinite system of binary differential equations. Mathematics 10 (2022) 4448. [CrossRef] [Google Scholar]
  22. W. Sun, P. Tsiotras, T. Lolla, D.N. Subramani and P.F.J. Lermus, Multiple-pursuer/one-evader pursuit–evasion game in dynamic flowfields. J. Guidance Control Dyn. 40 (2017) 1627–1637. [CrossRef] [Google Scholar]
  23. P. Cardaliaguet, M. Cirant and A. Porretta, Remarks on Nash equilibria in mean field game models with a major player. Proc. Am. Math. Soc. 148 (2020) 4241–4255. [CrossRef] [Google Scholar]
  24. R. Carmona and X. Zhu, A probabilistic approach to mean field games with major and minor players. Ann. Appl. Prob. 26 (2016) 1535–1580. [CrossRef] [Google Scholar]
  25. J.-M. Lasry and P.-L. Lions, Mean-field games with a major player. Comptes Rendus Mathematique 356 (2018) 886–890. [CrossRef] [MathSciNet] [Google Scholar]
  26. V.N. Kolokoltsov and A. Bensoussan, Mean-field-game model for Botnet defense in Cyber-security. Appl. Math. Optim. 74 (2016) 669–692. [CrossRef] [MathSciNet] [Google Scholar]
  27. V.N. Kolokoltsov and O.A. Malafeyev, Corruption and botnet defense: a mean field game approach. Int. J. Game Theory 47 (2018) 977–999. [CrossRef] [Google Scholar]
  28. G. Wang, Z. Li, W. Yao and S. Xia, A multi-population mean-field game approach for large-scale agents cooperative attack-defense evolution in high-dimensional environments. Mathematics 10 (2022) 4075. [CrossRef] [Google Scholar]
  29. Z. Zhou and H. Xu, Mean field game and decentralized intelligent adaptive pursuit evasion strategy for massive multi-agent system under uncertain environment. 2020 American Control Conference (ACC) (2020) 5382–5387. [CrossRef] [Google Scholar]
  30. R.J. DiPerna and P.L. Lions, Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98 (1989) 511–547. [Google Scholar]
  31. L. Ambrosio, Transport equation and Cauchy problem for BV vector fields. Invent. Math. 158 (2004) 227–260. [CrossRef] [MathSciNet] [Google Scholar]
  32. L. Ambrosio, Transport equation and Cauchy problem for non-smooth vector fields. Calculus of Variations and Nonlinear Partial Differential Equations, Lecture Notes in Mathematics, Vol. 1927, edited by B. Dacorogna and P. Marcellini. (2008) 2–41. [Google Scholar]
  33. L. Ambrosio and G. Crippa, Continuity equations and ODE flows with non-smooth velocity. Proc. Roy. Soc. Edinb. Sect. A Math. 144 (2014) 1191–1244. [CrossRef] [Google Scholar]
  34. H. Brezis, Analyse Fonctionnelle: Théorie et Applications. Masson, Paris (1983). [Google Scholar]
  35. G. Crippa, The Flow Associated to Weakly Differentiable Vector Fields. Ph.D. Thesis, Edizioni della Scuola Normale Superiore di Pisa (2009). [Google Scholar]
  36. R. Isaacs, Differential Games. John Wiley & Sons, New York (1965). [Google Scholar]
  37. V.S. Patsko and V.L. Turova, Homicidal chauffeur game: history and modern studies, in Advances in Dynamic Games. Ann. Int. Soc. Dyn. Games 11 (2011) 227–251. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.