Open Access
Issue |
ESAIM: COCV
Volume 30, 2024
|
|
---|---|---|
Article Number | 59 | |
Number of page(s) | 38 | |
DOI | https://doi.org/10.1051/cocv/2024049 | |
Published online | 28 August 2024 |
- J.F. Bonnans and T. Guilbaud, Using logarithmic penalties in the shooting algorithm for optimal control problems. Optimal Control Appl. Methods 24 (2003) 257–278. [CrossRef] [MathSciNet] [Google Scholar]
- K. Graichen and N. Petit, Incorporating a class of constraints into the dynamics of optimal control problems. Optimal Control Appl. Methods 30 (2009) 537–561. [CrossRef] [MathSciNet] [Google Scholar]
- L. Lasdon, A. Waren and R. Rice, An interior penalty method for inequality constrained optimal control problems. IEEE Trans. Automatic Control 12 (1967) 388–395. [CrossRef] [Google Scholar]
- P. Malisani, Interior point methods in optimal control problems for affine systems: convergence results and solving algorithms. SIAM J. Control Optim. 61 (2023) 3390–3414. [CrossRef] [MathSciNet] [Google Scholar]
- P. Malisani, F. Chaplais and N. Petit, An interior penalty method for optimal control problems with state and input constraints of nonlinear systems. Optimal Control Appl. Methods 37 (2014) 3–33. [Google Scholar]
- M. Weiser, Interior point methods in function space. SIAM J. Control Optim. 44 (2005) 1766–1786. [CrossRef] [MathSciNet] [Google Scholar]
- J.F. Bonnans, X. Dupuis and L. Pfeiffer, Second-order sufficient conditions for strong solutions to optimal control problems. ESAIM Control Optim. Calc. Var. 20 (2014) 704–724. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- J.F. Bonnans and A. Hermant, Second-order analysis for optimal control problems with pure state constraints and mixed control-state constraints. Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009) 561–598. [CrossRef] [MathSciNet] [Google Scholar]
- J.F. Bonnans, X. Dupuis and L. Pfeiffer, Second-order necessary conditions in pontryagin form for optimal control problems. SIAM J. Control Optim. 52 (2014) 3887–3916. [CrossRef] [MathSciNet] [Google Scholar]
- R.F. Hartl, S. Sethi and R. Vickson, A survey of the maximum principles for optimal control problems with state constraints. SIAM Rev. 37 (1995) 181–218. [CrossRef] [MathSciNet] [Google Scholar]
- H. Maurer and J. Zowe, First and second-order necessary and sufficient optimality conditions for infinite-dimensional programming problems. Math. Programm. 16 (1979) 98–110. [CrossRef] [Google Scholar]
- H. Seywald and E.M. Cliff, Goddard problem in presence of a dynamic pressure limit. J. Guidance Control Dyn. 16 (1993) 776–781. [CrossRef] [Google Scholar]
- P. Malisani, Python source code for “Interior point methods in optimal control”. https://ifpen-gitlab.appcollaboratif.fr/detocs/ipm_ocp, 2023. [Google Scholar]
- J.F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems. Springer-Verlag, New York (2000). [Google Scholar]
- A.J. Kurdila and M. Zabarankin, Convex Functional Analysis. Birkhäuser Boston (2005). [Google Scholar]
- H. Brézis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer (2010). [Google Scholar]
- V.I. Bogachev. Measure Theory. Springer Berlin Heidelberg, Berlin, Heidelberg (2007). [CrossRef] [Google Scholar]
- W. Rudin, Principles of Mathematical Analysis, 3rd edn. McGraw-Hill (1976). [Google Scholar]
- M. Renardy and R. Rogers, An Introduction to Partial Differential Equations, Vol. 13 of Texts in Applied Mathematics, 2nd edn. Springer, New York (2004). [Google Scholar]
- H. Khalil, Non Linear Systems. Prentice Hall (2002). [Google Scholar]
- J.-B. Caillau, R. Ferretti, E. Trélat and H. Zidani, Chapter 15 – An algorithmic guide for finite-dimensional optimal control problems, in Numerical Control: Part B, Vol. 24 of Handbook of Numerical Analysis. Elsevier (2023) 559–626. [CrossRef] [Google Scholar]
- J. Kierzenka and L.F. Shampine, A bvp solver based on residual control and the Maltab PSE. ACM Trans. Math. Softw. 27 (2001) 299–316. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.