Open Access
Issue
ESAIM: COCV
Volume 30, 2024
Article Number 58
Number of page(s) 34
DOI https://doi.org/10.1051/cocv/2024047
Published online 28 August 2024
  1. M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations. Systems & Control: Foundations & Applications. Birkhäuser Boston, Inc., Boston, MA (1997). [Google Scholar]
  2. M.G. Crandall, H. Ishii and P.-L. Lions, User’s guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. (N.S.) 27 (1982) 1–67. [Google Scholar]
  3. G. Barles, Fully nonlinear Neumann type boundary conditions for second-order elliptic and parabolic equations. J. Differ. Equ. 106 (1993) 90–106. [CrossRef] [Google Scholar]
  4. W. Fleming and H.M. Soner, Controlled Markov Processes and Viscosity Solutions. Vol. 25 of Stochastic Modelling and Applied Probability, 2nd edn. Springer, New York (2006). [Google Scholar]
  5. T.W. Ting, Elastic-plasitc torsion of a square bar. Trans. Amer. Math. Soc. 123 (1966) 369–401. [MathSciNet] [Google Scholar]
  6. A. Figalli and H. Shahgholian, An overview of unconstrained free boundary problems. Philos. Trans. Roy. Soc. A 373 (2050) 20140281. [Google Scholar]
  7. L.C. Evans, Correction to: A second-order elliptic equation with gradient Constraint. [Commun. Partial Differ. Equ. 4 (1979) 555-572]. Commun. Partial Differ. Equ. 4 (1979) 1199. [CrossRef] [Google Scholar]
  8. L.C. Evans, A second-order elliptic equation with gradient constraint. Commun. Partial Differ. Equ. 4 (1979) 555–572. [CrossRef] [Google Scholar]
  9. M. Wiegner, The C1,1-character of solutions of second order elliptic equations with gradient constraint. Commun. Partial Differ. Equ. 6 (1981) 361–371. [CrossRef] [Google Scholar]
  10. H. Ishii and S. Koike, Boundary regularity and uniqueness for an elliptic equation with gradient constraint. Commun. Partial Differ. Equ. 8 (1983) 317–346. [CrossRef] [Google Scholar]
  11. H.M. Soner and S. Shreve, Regularity of the value function for a two-dimensional singular stochastic control problem. SIAM J. Control Optim. 27 (1989) 876–907. [CrossRef] [MathSciNet] [Google Scholar]
  12. H.M. Soner and S. Shreve, A free boundary problem related to singular stochastic control: the parabolic case. Commun. Partial Differ. Equ. 16 (1991) 373–424. [CrossRef] [Google Scholar]
  13. H. Brézis and M. Sibony, Équivalence de deux inequations variationnelles et applications. Arch. Rational Mech. Anal. 41 (1971) 254–265. [CrossRef] [MathSciNet] [Google Scholar]
  14. J. Andersson, H. Shahgholian and G.S. Weiss, Double obstacle problems with obstacles given by non-C2 Hamilton–Jacobi equations. Arch. Ration. Mech. Anal. 206 (2012) 779–819. [CrossRef] [MathSciNet] [Google Scholar]
  15. R. Hynd, The eigenvalue problem of singular ergodic control. Commun. Pure Appl. Math. 65 (2012) 649–682. [CrossRef] [Google Scholar]
  16. R. Hynd, Analysis of Hamilton–Jacobi–Bellman equations arising in stochastic singular control. ESAIM Control Optim. Calc. Var. 19 (2013) 112–128. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  17. R. Hynd, An eigenvalue problem for a fully nonlinear elliptic equation with gradient constraint. Calc. Var. Partial Differ. Equ. 56 (2017) Paper No. 34, 31. [CrossRef] [Google Scholar]
  18. R. Hynd and H. Mawi, On Hamilton–Jacobi–Bellman equations with convex gradient constraints. Interfaces Free Bound. 18 (2016) 291–315. [CrossRef] [MathSciNet] [Google Scholar]
  19. M. Safdari, The free boundary of variational inequalities with gradient constraints. Nonlinear Anal. 123/124 (2015) 1–22. [CrossRef] [Google Scholar]
  20. M. Safdari, On the shape of the free boundary of variational inequalities with gradient constraints. Interfaces Free Bound. 19 (2017) 183–200. [CrossRef] [MathSciNet] [Google Scholar]
  21. M. Safdari, Double obstacle problems and fully nonlinear PDE with non-strictly convex gradient constraints. J. Differ. Equ. 278 (2021) 358–392. [CrossRef] [Google Scholar]
  22. M. Safdari, Global optimal regularity for variational problems with nonsmooth non-strictly convex gradient constraints. J. Differ. Equ. 279 (2021) 76–135. [CrossRef] [Google Scholar]
  23. H.A. Chang-Lara and E.A. Pimentel, Non-convex Hamilton–Jacobi equations with gradient constraints. Nonlinear Anal. 210 (2021) Paper No. 112362, 17. [Google Scholar]
  24. M. Borsuk, Transmission Problems for Elliptic Second-order Equations in Non-smooth domains. Frontiers in Mathematics. Birkhäuser/Springer Basel AG, Basel (2010). [CrossRef] [Google Scholar]
  25. L.A. Caffarelli, M. Soria-Carro and P. Stinga, Regularity for C1,α interface transmission problems. Arch. Ration. Mech. Anal. 240 (2021) 265–294. [CrossRef] [MathSciNet] [Google Scholar]
  26. M. Soria-Carro and P. Stinga, Regularity of viscosity solutions to fully nonlinear elliptic transmission problems (2022). [Google Scholar]
  27. D. Kriventsov, Regularity for a local-nonlocal transmission problem. Arch. Ration. Mech. Anal. 217 (2015) 1103–1195. [CrossRef] [MathSciNet] [Google Scholar]
  28. M. D’Elia, M. Perego, P. Bochev and D. Littlewood, A coupling strategy for nonlocal and local diffusion models with mixed volume constraints and boundary conditions. Comput. Math. Appl. 71 (2016) 2218–2230. [CrossRef] [MathSciNet] [Google Scholar]
  29. M. Capanna and J.D. Rossi, Mixing local and nonlocal evolution equations. Mediterr. J. Math. 20 (2023) Paper No. 59, 36. [CrossRef] [Google Scholar]
  30. G. Barles, A. Briani and E. Chasseigne, A Bellman approach for two-domains optimal control problems in N. ESAIM Control Optim. Calc. Var. 19 (2013) 710–739. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  31. G. Barles, A. Briani and E. Chasseigne, A Bellman approach for regional optimal control problems in N. SIAM J. Control Optim. 52 (2014) 1712–1744. [Google Scholar]
  32. P.-L. Lions and P. Souganidis, Viscosity solutions for junctions: well posedness and stability. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 27 (2016) 535–545. [MathSciNet] [Google Scholar]
  33. P.-L. Lions and P. Souganidis, Well-posedness for multi-dimensional junction problems with Kirchoff-type conditions. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 28 (2017) 807–816. [MathSciNet] [Google Scholar]
  34. C. Imbert and R. Monneau, Quasi-convex Hamilton–Jacobi equations posed on junctions: the multi-dimensional case. Discrete Contin. Dyn. Syst. 37 (2017) 6405–6435. [CrossRef] [MathSciNet] [Google Scholar]
  35. G. Barles, A. Briani, E. Chasseigne and C. Imbert, Flux-limited and classical viscosity solutions for regional control problems. ESAIM Control Optim. Calc. Var. 24 (2018) 1881–1906. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  36. C. Imbert and V.D. Nguyen, Effective junction conditions for degenerate parabolic equations. Calc. Var. Partial Differ. Equ. 56 (2017) Paper No. 157, 27. [CrossRef] [Google Scholar]
  37. J.L. Kazdan, Prescribing the Curvature of a Riemannian Manifold. Vol. 57 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI (1985). [CrossRef] [Google Scholar]
  38. D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer-Verlag, Berlin (2001). Reprint of the 1998 edition. [CrossRef] [Google Scholar]
  39. A. Friedman, Differential games, in Handbook of Game Theory with Economic Applications, Vol. II. Vol. 11 of Handbooks in Econom.. North-Holland, Amsterdam (1994) 781–799. [Google Scholar]
  40. P. Azcue, N. Muler and Z. Palmowski, Optimal dividend payments for a two-dimensional insurance risk process. Eur. Actuar. J. 9 (2019) 241–272. [CrossRef] [MathSciNet] [Google Scholar]
  41. K. Miller, Barriers on cones for uniformly elliptic operators. Ann. Mat. Pura Appl. 76 (1967) 93–105. [CrossRef] [MathSciNet] [Google Scholar]
  42. H. Ishii, Perron’s method for Hamilton–Jacobi equations. Duke Math. J. 55 (1987) 369–384. [CrossRef] [MathSciNet] [Google Scholar]
  43. L.A. Caffarelli, Interior a priori estimates for solutions of fully nonlinear equations. Ann. Math. 130 (1989) 189–213. [CrossRef] [MathSciNet] [Google Scholar]
  44. N.S. Trudinger, Comparison principles and pointwise estimates for viscosity solutions of nonlinear elliptic equations. Rev. Mat. Iberoamericana 4 (1988) 453–468. [CrossRef] [MathSciNet] [Google Scholar]
  45. L.A. Caffarelli and X. Cabré, Fully Nonlinear Elliptic Equations. Vol. 43 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI (1995). [CrossRef] [Google Scholar]
  46. J. Calder, Lecture notes on viscosity solutions (2018). Lecture notes available at the webpage of the author. [Google Scholar]
  47. N. Krylov, Boundedly inhomogeneous elliptic and parabolic equations. Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982) 487–523, 670. [MathSciNet] [Google Scholar]
  48. R. Schneider, Convex Bodies: The Brunn-Minkowski Theory. Vol. 151 of Encyclopedia of Mathematics and its Applications, expanded edn. Cambridge University Press, Cambridge (2014). [Google Scholar]
  49. E. Barron and R. Jensen, Semicontinuous viscosity solutions for Hamilton–Jacobi equations with convex Hamiltonians. Commun. Partial Differ. Equ. 15 (1990) 1713–1742. [Google Scholar]
  50. H.V. Tran, Hamilton–Jacobi Equations – Theory and Applications. Vol. 213 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2021). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.