Open Access
Issue
ESAIM: COCV
Volume 30, 2024
Article Number 55
Number of page(s) 33
DOI https://doi.org/10.1051/cocv/2024046
Published online 24 July 2024
  1. P. Benner and T. Breiten, Two-sided projection methods for nonlinear model order reduction. SIAM J. Sci. Comput. 37 (2015) B239–B260. [CrossRef] [Google Scholar]
  2. C. Gu, QLMOR: a projection-based nonlinear model order reduction approach using quadratic-linear representation of nonlinear systems. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 30 (2011) 1307–1320. [CrossRef] [Google Scholar]
  3. R.E. Mortensen, Maximum-likelihood recursive nonlinear filtering. J. Optim. Theory Appl. 2 (1968) 386–394. [Google Scholar]
  4. R.E. Kalman, A new approach to linear filtering and prediction problems. Trans. ASME Ser. D. J. Basic Eng. 82 (1960) 35–45. [CrossRef] [Google Scholar]
  5. R.E. Kalman and R.S. Bucy, New results in linear filtering and prediction theory. Trans. ASME Ser. D. J. Basic Eng. 83 (1961) 95–108. [CrossRef] [Google Scholar]
  6. K. Ito and K. Xiong, Gaussian filter for nonlinear filtering problems. IEEE Trans. Autom. Control 45 (2000) 910–927. [CrossRef] [Google Scholar]
  7. H.J. Kushner, On the differential equations satisfied by conditional probability densities of Markov processes, with applications. SIAM J. Control Optim. 2 (1962) 106–119. [Google Scholar]
  8. H.J. Kushner, Approximations to optimal nonlinear filters. IEEE Trans. Autom. Control 12 (1967) 546–556. [CrossRef] [Google Scholar]
  9. M. Zakai, On the optimal filtering of diffusion processes. Z. Wahrschein. Verw. Gebiete 11 (1969) 230–243. [CrossRef] [Google Scholar]
  10. J.C. Willems, Deterministic least squares filtering. J. Econometrics 118 (2004) 341–373. [CrossRef] [MathSciNet] [Google Scholar]
  11. D.G. Luenberger, An introduction to observers. IEEE Trans. Autom. Control 16 (1971) 596–602. [CrossRef] [Google Scholar]
  12. O. Hijab, Minimum energy estimation, Ph.D. dissertation, University of California, Berkeley (1980). [Google Scholar]
  13. A.J. Krener, Minimum covariance, minimax and minimum energy estimators, in Stochastic Control Theory and Stochastic Differential Systems, edited by M. Kohlmann and W. Vogel. Vol. 16 of Lecture Notes in Control and Information Science. Springer, Berlin-New York (1979) 490–495. [CrossRef] [Google Scholar]
  14. W.H. Fleming, Deterministic nonlinear filtering. Ann. Sc. Norm. Super. Pisa - Cl. Sci. 25 (1997) 435–454. [Google Scholar]
  15. P. Moireau, A discrete-time optimal filtering approach for non-linear systems as a stable discretization of the Mortensen observer. ESAIM Control Optim. Calc. Var. 24 (2018) 1815–1847. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  16. W.H. Fleming and H.M. Soner, Controlled Markov Processes and Viscosity Solutions. Vol. 25 of Stochastic Modelling and Applied Probability. Springer, New York (2006). [Google Scholar]
  17. A.J. Krener The convergence of the extended Kalman filter, in Directions in Mathematical Systems Theory and Optimization. Vol. 286 of Lect. Notes Control Inf. Sci. Springer, Berlin (2003) 173–182. [Google Scholar]
  18. J.S. Baras, A. Bensoussan and M.R. James, Dynamic observers as asymptotic limits of recursive filters: special cases. SIAM J. Appl. Math. 48 (1988) 1147–1158. [Google Scholar]
  19. A.J. Krener The convergence of the minimum energy estimator, in New Trends in Nonlinear Dynamics and Control and their Applications. Springer, Berlin (2003) 187–208. [Google Scholar]
  20. T. Breiten and K. Kunisch, Neural network based nonlinear observers. Syst. Control Lett. 148 (2021). [Google Scholar]
  21. M.G. Crandall and P.L. Lions, Viscosity solutions of Hamilton–Jacobi equations. Trans. Am. Math. Soc. 277 (1983) 1–42. [CrossRef] [Google Scholar]
  22. P. Cannarsa and H. Frankowska, Some characterizations of optimal trajectories in control theory. SIAM J. Control Optim. 29 (1991) 1322–1347. [CrossRef] [MathSciNet] [Google Scholar]
  23. P. Cannarsa and H. Frankowska, Value function and optimality conditions for semilinear control problems. Appl. Math. Optim. 26 (1992) 139–169. [CrossRef] [MathSciNet] [Google Scholar]
  24. P. Cannarsa and H. Frankowska, Local regularity of the value function in optimal control. Syst. Control Lett. 62 (2013) 791–794. [CrossRef] [Google Scholar]
  25. P. Cannarsa and H. Frankowska, From pointwise to local regularity for solutions of Hamilton–Jacobi equations. Calc. Var. Partial Differ. Equ. 49 (2014) 1061–1074. [CrossRef] [Google Scholar]
  26. T. Breiten, K. Kunisch and L. Pfeiffer, Feedback stabilization of the two-dimensional Navier-Stokes equations by value function approximation. Appl. Math. Optim. 80 (2019) 599–641. [CrossRef] [MathSciNet] [Google Scholar]
  27. T. Breiten, K. Kunisch and L. Pfeiffer, Taylor expansions of the value function associated with a bilinear optimal control problem. Ann. Inst. Henri Poincaré (C) Anal. Non Linéaire 36 (2019) 1361–1399. [CrossRef] [MathSciNet] [Google Scholar]
  28. K. Malanowski, Application of the classical implicit function theorem in sensitivity analysis of parametric optimal control. Control Cybern. 27 (1998) 335–352. [Google Scholar]
  29. K. Malanowski and H. Maurer, Sensitivity analysis for state constrained optimal control problems. Discrete Contin. Dyn. Syst. 4 (1998) 241–272. [CrossRef] [Google Scholar]
  30. K. Malanowski and H. Maurer, Sensitivity analysis of optimal control problems subject to higher order state constraints. Ann. Oper. Res. 101 (2001) 43–73. [CrossRef] [MathSciNet] [Google Scholar]
  31. K. Ito and K. Kunisch, Lagrange Multiplier Approach to Variational Problems and Applications, 1st edn. SIAM, Philadelphia, PA (2008). [Google Scholar]
  32. J.T. Marti, Evaluation of the least constant in Sobolev’s inequality for H1 (0, s). SIAM J. Numer. Anal. 20 (1983) 1239–1242. [CrossRef] [MathSciNet] [Google Scholar]
  33. M. Hinze, R. Pinnau, M. Ulbrich and S. Ulbrich, Optimization with PDE Constraints. Vol. 23 of Mathematical Modelling: Theory and Applications. Springer (2009). [Google Scholar]
  34. E. Zeidler Applied Functional Analysis: Main Principles and Their Applications, 1st edn. Springer, New York (1995). [Google Scholar]
  35. J.M. Holtzman, Short notes: explicit ϵ and δ for the implicit function theorem. SIAM Rev. 12 (1970) 284–286. [CrossRef] [MathSciNet] [Google Scholar]
  36. O. Forster, Analysis 1, Differential- und Integralrechnung einer Veränderlichen, Springer Fachmedien, Wiesbaden, 11th edn (2013). [CrossRef] [Google Scholar]
  37. L. Dieci and T. Eirola, Positive definiteness in the numerical solution of Riccati differential equations. Numer. Math. 67 (1994) 303–313. [CrossRef] [MathSciNet] [Google Scholar]
  38. E. Zeidler, Applied Functional Analysis: Applications to Mathematical Physics, 1st edn. Springer, New York (1995). [Google Scholar]
  39. W. Rudin, Principles of Mathematical Analysis, 3rd edn. McGraw-Hill Kogakusha, Tokyo (1976). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.