Open Access
Issue
ESAIM: COCV
Volume 30, 2024
Article Number 56
Number of page(s) 31
DOI https://doi.org/10.1051/cocv/2024017
Published online 07 August 2024
  1. B. Pass, Multi-marginal optimal transport: theory and applications. ESAIM: Math. Model. Numer. Anal. 49 (2015) 1771–1790. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  2. M. Lewin, E.H. Lieb and R. Seiringer, Statistical mechanics of the uniform electron gas. J. l’École Polytech. Math. 5 (2018) 79–116. [CrossRef] [Google Scholar]
  3. M. Lewin, E.H. Lieb and R. Seiringer, The local density approximation in density functional theory. Pure Appl. Anal. 2 (2020) 35–73. [CrossRef] [MathSciNet] [Google Scholar]
  4. M. Lewin, E.H. Lieb and R. Seiringer, Universal Functionals in Density Functional Theory. arXiv:1912.10424 (2019). [Google Scholar]
  5. A.J.M. Yang, P.D. Fleming and J.H. Gibbs, Molecular theory of surface tension. J. Chem. Phys. 64 (1976) 3732–3747. [CrossRef] [Google Scholar]
  6. J.M. Altschuler and E. Boix-Adserà, Hardness results for multimarginal optimal transport problems. Discrete Optim. 42 (2021) 100669. [CrossRef] [Google Scholar]
  7. J.D. Benamou, G. Carlier and L. Nenna, A Numerical Method to Solve Multi-Marginal Optimal Transport Problems with Coulomb Cost// Scientific Computation: Splitting Methods in Communication, Imaging, Science, and Engineering. Springer International Publishing, Cham (2016) 577–601. [Google Scholar]
  8. G. Friesecke, A.S. Schulz and D. Vögler, Genetic column generation: fast computation of high-dimensional multimarginal optimal transport problems. SIAM J. Sci. Comput. 44 (2022) A1632–A1654. [CrossRef] [Google Scholar]
  9. A. Alfonsi, R. Coyaud and V. Ehrlacher, Constrained overdamped Langevin dynamics for symmetric multimarginal optimal transportation. Math. Models Methods Appl. Sci. 32 (2022) 403–455. [CrossRef] [MathSciNet] [Google Scholar]
  10. A. Alfonsi, R. Coyaud, V. Ehrlacher et al., Approximation of optimal transport problems with marginal moments constraints. Math. Comp. 90 (2020) 689–737. [CrossRef] [Google Scholar]
  11. G. Buttazzo, T. Champion and L. De Pascale, Continuity and estimates for multimarginal optimal transportation problems with singular costs. Appl. Math. Optim. 78 (2018) 185–200. [CrossRef] [MathSciNet] [Google Scholar]
  12. M. Colombo, S. Di Marino and F. Stra, Continuity of multimarginal optimal transport with repulsive cost. SIAM J. Math. Anal. 51 (2019) 2903–2926. [CrossRef] [MathSciNet] [Google Scholar]
  13. J.T. Chayes, L. Chayes and E.H. Lieb, The inverse problem in classical statistical mechanics. Commun. Math. Phys. 93 (1984) 57–121. [CrossRef] [Google Scholar]
  14. C.B. Mendl and L. Lin, Kantorovich dual solution for strictly correlated electrons in atoms and molecules. Phys. Rev. B 87 (2013) 125106. [CrossRef] [Google Scholar]
  15. M. Seidl, J.P. Perdew and M. Levy, Strictly correlated electrons in density-functional theory. Phys. Rev. A 59 (1999) 51–54. [CrossRef] [Google Scholar]
  16. M. Seidl, Strong-interaction limit of density-functional theory. Phys. Rev. A 60 (1999) 4387–4395. [CrossRef] [Google Scholar]
  17. M. Levy, Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem. Proc. Natl. Acad. Sci. U.S.A. 76 (1979) 6062–6065. [CrossRef] [PubMed] [Google Scholar]
  18. E.H. Lieb, Density functionals for coulomb systems. Int. J. Quant. Chem. 24 (1983) 243–277. [CrossRef] [Google Scholar]
  19. M. Lewin, Semi-classical limit of the Levy–-Lieb functional in density functional theory. Comptes Rendus Math. 356 (2018) 449–455. [CrossRef] [MathSciNet] [Google Scholar]
  20. F. Malet and P. Gori-Giorgi, Strong Correlation in Kohn–Sham density functional theory. Phys. Rev. Lett. 109 (2012) 246402. [CrossRef] [PubMed] [Google Scholar]
  21. E. Proynov, F. Liu and J. Kong, Analyzing effects of strong electron correlation within Kohn-Sham densityfunctional theory. Phys. Rev. A 88 (2013) 032510. [CrossRef] [Google Scholar]
  22. F. Malet, A. Mirtschink, K.J.H. Giesbertz et al., Density functional theory for strongly-interacting electrons,// in Mathematical Physics Studies: Many-Electron Approaches in Physics, Chemistry and Mathematics: A Multidisciplinary View, edited by V. Bach and L. Delle Site. Springer International Publishing, Cham (2014) 153–168. [Google Scholar]
  23. C.B. Mendl, F. Malet and P. Gori-Giorgi, Wigner localization in quantum dots from Kohn–Sham density functional theory without symmetry breaking. Phys. Rev. B 89 (2014) 125106. [CrossRef] [Google Scholar]
  24. S. Giarrusso, S. Vuckovic and R. Gori-Giorgi, Response potential in the strong-interaction limit of density functional theory: analysis and comparison with the coupling-constant average. J. Chem. Theory Comput. 14 (2018) 4151–4167. [CrossRef] [PubMed] [Google Scholar]
  25. J. Grossi, Z.H. Musslimani and M. Seidl et al., Kohn–Sham equations with functionals from the strictly-correlated regime: investigation with a spectral renormalization method. J. Phys. Condensed Matter 32 (2020) 475602. [CrossRef] [Google Scholar]
  26. A. Marie, D.P. Kooi, J. Grossi et al., Real-space Mott-Anderson electron localization with long-range interactions. Phys. Rev. Res. 4 (2022) 043192. [Google Scholar]
  27. C. Cotar, G. Friesecke and C. Klüppelberg, Density Functional theory and optimal transportation with Coulomb cost. Commun. Pure Appl. Math. 66 (2013) 548–599. [CrossRef] [Google Scholar]
  28. U. Bindini and L. De Pascale, Optimal transport with coulomb cost and the semiclassical limit of density functional theory. J. l’École Polytech. Math. 4 (2017) 909–934. [CrossRef] [Google Scholar]
  29. W. Kohn and L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140 (1965) A1133–A1138. [CrossRef] [Google Scholar]
  30. G. Friesecke, A. Gerolin and P. Gori-Giorgi, The strong-interaction limit of density functional Theory, in Density Functional Theory, edited by E. Cancès and G. Friesecke (2022). [Google Scholar]
  31. G. Buttazzo, L. De Pascale and P. Gori-Giorgi, Optimal-transport formulation of electronic density-functional theory. Phys. Rev. A 85 (2012) 062502. [Google Scholar]
  32. F. Santambrogio, Progress in nonlinear differential equations and their applications. Vol. 87 of Optimal Transport for Applied Mathematicians: Calculus of Variations, PD/s, and Modeling. Springer International Publishing, Cham (2015). [Google Scholar]
  33. G. Peyré and M. Cuturi, Computational optimal transport: with applications to data science. MAL 11 (2019) 355–607. [Google Scholar]
  34. N.S. Landkof, Die Grundlehren der mathematischen Wissenschaften, Band 180: Foundations of Modern Potential Theory. Springer-Verlag, New York-Heidelberg (1972). [Google Scholar]
  35. R. Lelotte, Asymptotic of the Kantorovich potential for the optimal transport with Coulomb cost. (2022). [Google Scholar]
  36. C. Léonard, From the Schrödinger problem to the Monge–Kantorovich problem. J. Funct. Anal. 262 (2012) 1879–1920. [CrossRef] [MathSciNet] [Google Scholar]
  37. A. Gerolin, A. Kausamo and T. Rajala, Multi-marginal entropy-transport with repulsive cost. Calc. Var. Part. Diff. Eq. 59 (2020) 90, 20. [CrossRef] [Google Scholar]
  38. J. Wu, Density functional theory for liquid structure and thermodynamics// in Structure and Bonding: Molecular Thermodynamics of Complex Systems, edited by X. Lu and Y. Hu. Springer, Berlin, Heidelberg (2009) 1–73. [Google Scholar]
  39. Y. Singh, Density-functional theory of freezing and properties of the ordered phase. Phys. Rep. 207 (1991) 351–444. [CrossRef] [Google Scholar]
  40. R. Evans, Density Functionals in the Theory of Non-Uniform Fluids// in Fundamentals of Inhomogeneous Fluids. Marcel Dekker (1992) 85–175. [Google Scholar]
  41. G. Carlier, V. Duval, G. Peyré et al., Convergence of entropic schemes for optimal transport and gradient flows. SIAM J. Math. Anal. 49 (2017) 1385–1418. [CrossRef] [MathSciNet] [Google Scholar]
  42. M. Nutz and J. Wiesel, Entropic optimal transport: convergence of potentials. Probab. Theory Relat. Fields 184 (2022) 401–424. [CrossRef] [Google Scholar]
  43. M. Cuturi, Sinkhorn distances: lightspeed computation of optimal transport// in NIPS’13: Proceedings of the 26th International Conference on Neural Information Processing Systems, Vol. 2. (2013) 2292–2300. [Google Scholar]
  44. J.D. Benamou, G. Carlier, M. Cuturi et al., Iterative Bregman Projections for Regularized Transportation Problems. SIAM J. Sci. Comput. 37 (2015) A1111–A1138. [CrossRef] [Google Scholar]
  45. L. Nenna, Numerical methods for multi-marginal optimal transportation. (2016). [Google Scholar]
  46. T. Lelièvre, M. Rousset and G. Stoltz, Free Energy Computations. Imperial College Press, London (2010). [CrossRef] [Google Scholar]
  47. E. Cancès, F. Legoll and G. Stoltz, Theoretical and numerical comparison of some sampling methods for molecular dynamics. M2AN. Math. Model. Numer. Anal. 41 (2007) 351–389. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  48. M. Colombo, L. De Pascale and S. Di Marino, Multimarginal optimal transport maps for one–dimensional repulsive costs. Can. J. Math. 67 (2015) 350–368. [CrossRef] [Google Scholar]
  49. E. Räsänen, M. Seidl and P. Gori-Giorgi, Strictly correlated uniform electron droplets. Phys. Rev. B 83 (2011) 195111. [CrossRef] [Google Scholar]
  50. M. Seidl, P. Gori-Giorgi and A. Savin, Strictly correlated electrons in density-functional theory: A general formulation with applications to spherical densities. Phys. Rev. A 75 (2007) 042511. [CrossRef] [Google Scholar]
  51. B. Pass, Remarks on the semi-classical Hohenberg-–Kohn functional. Nonlinearity 26 (2013) 2731. [CrossRef] [MathSciNet] [Google Scholar]
  52. G.O. Roberts and R.L. Tweedie, Exponential convergence of Langevin distributions and their discrete approximations. Bernoulli 2 (1996) 341–363. [CrossRef] [Google Scholar]
  53. S. Di Marino, Personal communication. [Google Scholar]
  54. L.C. Evans, Graduate studies in mathematics. Vol. 19 of Partial Differential Equations, 2nd edn. American Mathematical Society (2010). [Google Scholar]
  55. E.H. Lieb and M. Loss, Graduate Studies in Mathematics. Vol. 14 of Analysis, 2nd edn. American Mathematical Society, Providence, RI (2001). [Google Scholar]
  56. J. Borwein and A. Lewis, CMS Books in Mathematics: Convex Analysis and Nonlinear Optimization. Springer, New York, NY (2006). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.