Open Access
Issue
ESAIM: COCV
Volume 30, 2024
Article Number 53
Number of page(s) 31
DOI https://doi.org/10.1051/cocv/2024043
Published online 12 July 2024
  1. M. Giovanna Mora and S. Müller, Derivation of the nonlinear bending-torsion theory for inextensible rods by Γ-convergence. Calc. Var. Part. Differ. Equ. 18 (2003) 287–305. [CrossRef] [Google Scholar]
  2. S. Bartels, A simple scheme for the approximation of the elastic flow of inextensible curves. IMA J. Numer. Anal. 33 (2013) 1115–1125. [CrossRef] [MathSciNet] [Google Scholar]
  3. S. Bartels and P. Reiter, Numerical solution of a bending-torsion model for elastic rods. Numer. Math. 146 (2020) 661–697. [CrossRef] [MathSciNet] [Google Scholar]
  4. P. Jung, S. Leyendecker, J. Linn and M. Ortiz, A discrete mechanics approach to the Cosserat rod theory—part 1: static equilibria. Int. J. Numer. Methods Eng. 85 (2011) 31–60. [CrossRef] [Google Scholar]
  5. M. Bergou et al., Discrete elastic rods, in ACM SIGGRAPH 2008 papers. ACM (2008) 1–12. [Google Scholar]
  6. C. Lestringant, B. Audoly and D.M. Kochmann, A discrete, geometrically exact method for simulating nonlinear, elastic and inelastic beams. Comput. Methods Appl. Mech. Eng. 361 (2020) 112741, 33. [CrossRef] [Google Scholar]
  7. K. Korner, B. Audoly and K. Bhattacharya, Simple deformation measures for discrete elastic rods and ribbons. Proc. A 477 (2021) Paper No. 20210561, 20. [Google Scholar]
  8. S. Scholtes, H. Schumacher and M. Wardetzky, Variational convergence of discrete elasticae. IMA J. Numer. Anal. 42 (2022) 300–332. [CrossRef] [MathSciNet] [Google Scholar]
  9. J.-J. Alibert, A. Della Corte, I. Giorgio and A. Battista, Extensional elastica in large deformation as Γ-limit of a discrete 1D mechanical system. Z. Angew. Math. Phys. 68 (2017) Paper No. 42, 19. [CrossRef] [Google Scholar]
  10. J.-J. Alibert, A. Della Corte and P. Seppecher, Convergence of Hencky-type discrete beam model to Euler inextensible elastica in large deformation: rigorous proof, in Mathematical Modelling in Solid Mechanics. Vol. 69 of Adv. Struct. Mater. Springer, Singapore (2017) 1–12. [CrossRef] [Google Scholar]
  11. A.M. Bruckstein, R.J. Holt and A.N. Netravali, Discrete elastica. Appl. Anal. 78 (2001) 453–485. [CrossRef] [MathSciNet] [Google Scholar]
  12. M.I. Español, D. Golovaty and J. Patrick Wilber, Euler elastica as a Γ-limit of discrete bending energies of one-dimensional chains of atoms. Math. Mech. Solids 23 (2018) 1104–1116. [CrossRef] [MathSciNet] [Google Scholar]
  13. J.A. Iglesias and A.M. Bruckstein, On the Gamma-convergence of some polygonal curvature functionals. Appl. Anal. 94 (2015) 957–979. [CrossRef] [MathSciNet] [Google Scholar]
  14. R.L. Bishop, There is more than one way to frame a curve. Amer. Math. Monthly 82 (1975) 246–251. [CrossRef] [MathSciNet] [Google Scholar]
  15. P. Hornung, Deformation of framed curves with boundary conditions. Calc. Var. Part. Differ. Equ. 60 (2021) Paper No. 87, 26. [CrossRef] [Google Scholar]
  16. A. Braides, Γ-convergence for beginners. Vol. 22 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford (2002). [Google Scholar]
  17. A. Braides, Discrete approximation of functionals with jumps and creases, in Homogenization (Naples). Vol. 18 of GAKUTO Internat. Ser. Math. Sci. Appl. (2001) 147–153. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.