Open Access
Issue |
ESAIM: COCV
Volume 30, 2024
|
|
---|---|---|
Article Number | 52 | |
Number of page(s) | 49 | |
DOI | https://doi.org/10.1051/cocv/2024041 | |
Published online | 12 July 2024 |
- H.G. Lee, J.S. Lowengrub and J. Goodman, Modeling pinch-off and reconnection in a Hele–Shaw cell. I. The models and their calibration. Phys. Fluids 14 (2002) 492–512. [CrossRef] [MathSciNet] [Google Scholar]
- H.G. Lee, J.S. Lowengrub and J. Goodman, Modeling pinch-off and reconnection in a Hele–Shaw cell. II. Analysis and simulation in the nonlinear regime. Phys. Fluids 14 (2002) 514–545. [CrossRef] [MathSciNet] [Google Scholar]
- L. Dede, H. Garcke and K.-F. Lam, A Hele–Shaw–Cahn–Hilliard model for incompressible two-phase flows with different densities. J. Math. Fluid Mech. 20 (2018) 531–567. [CrossRef] [MathSciNet] [Google Scholar]
- A. Giorgini, Well-posedness of a diffuse interface model for Hele–Shaw flows. J. Math. Fluid Mech. 22 (2020) article number 5. [CrossRef] [Google Scholar]
- A. Giorgini, M. Grasselli and H. Wu, The Cahn–Hilliard–Hele–Shaw system with singular potential. Ann. Inst. H. Poincaré Anal. Non Lineaire 35 (2018) 1079–1118. [CrossRef] [MathSciNet] [Google Scholar]
- X.-M. Wang and H. Wu, Long-time behavior for the Hele–Shaw–Cahn–Hilliard system. Asymptot. Anal. 78 (2012) 217–245. [MathSciNet] [Google Scholar]
- X.-M. Wang and Z.-F. Zhang, Well-posedness of the Hele–Shaw–Cahn–Hilliard system. Ann. Inst. H. Poincaré Anal. Non Linéaire 30 (2013) 367–384. [CrossRef] [MathSciNet] [Google Scholar]
- C. Cavaterra, S. Frigeri and M. Grasselli, Nonlocal Cahn–Hilliard–Hele–Shaw systems with singular potential and degenerate mobility. J. Math. Fluid Mech. 24 (2022) article number 13. [CrossRef] [PubMed] [Google Scholar]
- F. Della Porta, A. Giorgini and M. Grasselli, The nonlocal Cahn–Hilliard–Hele–Shaw system with logarithmic potential. Nonlinearity 31 (2018) 4851–4881. [CrossRef] [MathSciNet] [Google Scholar]
- J. Lowengrub, E. Titi and K. Zhao, Analysis of a mixture model of tumor growth. Eur. J. Appl. Math. 24 (2013) 691–734. [CrossRef] [Google Scholar]
- H.B. Frieboes, F. Jin, Y.L. Chuang, S.M. Wise, J.S. Lowengrub and V. Cristini, Three-dimensional multispecies nonlinear tumor growth – II: Tumor invasion and angiogenesis. J. Theor. Biol. 264 (2010) 1254–1278. [CrossRef] [Google Scholar]
- H. Garcke, K.-F. Lam, E. Sitka and V. Styles, A Cahn–Hilliard–Darcy model for tumour growth with chemotaxis and active transport. Math. Models Methods Appl. Sci. 26 (2016) 1095–1148. [CrossRef] [MathSciNet] [Google Scholar]
- S.M. Wise, J.S. Lowengrub, H.B. Frieboes and V. Cristini, Three-dimensional multispecies nonlinear tumor growth – I: model and numerical method. J. Theor. Biol. 253 (2008) 524–543. [CrossRef] [Google Scholar]
- J. Jiang, H. Wu and S.-M. Zheng, Well-posedness and long-time behavior of a non-autonomous Cahn–Hilliard–Darcy system with mass source modeling tumor growth. J. Differ. Equ. 259 (2015) 3032–3077. [CrossRef] [Google Scholar]
- J. Sprekels and H. Wu, Optimal distributed control of a Cahn–Hilliard–Darcy system with mass sources. Appl. Math. Optim. 83 (2021) 489–530. [Google Scholar]
- C.G. Gal, A. Giorgini and M. Grasselli, The separation property for 2D Cahn–Hilliard equations: local, nonlocal and fractional energy cases. Discrete Contin. Dyn. Syst. 43 (2023) 2270–2304. [CrossRef] [MathSciNet] [Google Scholar]
- K.-F. Lam, Global and exponential attractors for a Cahn–Hilliard equation with logarithmic potentials and mass source. J. Differ. Equ. 312 (2022) 237–275. [CrossRef] [Google Scholar]
- A. Miranville, The Cahn–Hilliard Equation: Recent Advances and Applications. CBMS-NSD Regional Conference Series in Applied Mathematics, vol. 95. SIAM (2019). [Google Scholar]
- A. Giorgini, K.-F. Lam, E. Rocca and G. Schimperna, On the existence of strong solutions to the Cahn–Hilliard–Darcy system with mass source. SIAM J. Math. Anal. 54 (2022) 737–767. [CrossRef] [MathSciNet] [Google Scholar]
- G. Schimperna, On the Cahn–Hilliard–Darcy system with mass source and strongly separating potential. Discrete Contin. Dyn. Syst. Ser. S 15 (2022) 2305–2329. [CrossRef] [MathSciNet] [Google Scholar]
- S. Frigeri, K.-F. Lam, E. Rocca and G. Schimperna, On a multi-species Cahn–Hilliard–Darcy tumor growth model with singular potentials. Commun. Math. Sci. 16 (2018) 821–856. [CrossRef] [MathSciNet] [Google Scholar]
- P. Knopf and A. Signori, Existence of weak solutions to multiphase Cahn–Hilliard–Darcy and Cahn–Hilliard–Brinkman models for stratified tumor growth with chemotaxis and general source terms. Comm. Partial Differ. Equ. 47 (2022) 233–278. [CrossRef] [Google Scholar]
- M. Ebenbeck and P. Knopf, Optimal medication for tumors modeled by a Cahn–Hilliard–Brinkman equation. Calc. Var. Partial Differ. Equ. 58 (2019) article number 131. [CrossRef] [PubMed] [Google Scholar]
- M. Ebenbeck and P. Knopf, Optimal control theory and advanced optimality conditions for a diffuse interface model of tumor growth. ESAIM: Control Optim. Calc. Var. 26 (2020) article number 71. [CrossRef] [EDP Sciences] [Google Scholar]
- J. Sprekels and F. Tröltzsch, Sparse optimal control of a phase field system with singular potentials arising in the modeling of tumor growth. ESAIM Control Optim. Calc. Var. 27 (2021) article number S26. [CrossRef] [EDP Sciences] [Google Scholar]
- J. Sprekels and F. Tröltzsch, Second-order sufficient conditions in the sparse optimal control of a phase field tumor growth model with logarithmic potential. ESAIM Control Optim. Calc. Var. 30 (2024) article number 13. [CrossRef] [EDP Sciences] [Google Scholar]
- Y. Giga and T. Miyakawa, Solutions in Lr of the Navier-Stokes initial value problem. Arch. Ration. Mech. Anal. 89 (1985) 267–281. [CrossRef] [Google Scholar]
- H. Sohr, The Navier–Stokes Equations. An Elementary Functional Analytic Approach. Birkhäuser Advanced Texts, Springer Basel AG (2001). [CrossRef] [Google Scholar]
- M. Abatangelo, A Cahn–Hilliard–Darcy System with Logarithmic Potential and Non-autonomous Sources. Master Thesis, Università degli Studi di Milano (2020). [Google Scholar]
- A. Giorgini, M. Grasselli and A. Miranville, The Cahn–Hilliard–Oono equation with singular potential. Math. Models Methods Appl. Sci. 27 (2017) 2485–2510. [Google Scholar]
- C.G. Gal and A. Poiatti, Unified framework for the separation property in binary phase segregation processes with singular entropy densities. Eur. J. Appl. Math. https://doi.org/10.1017/S0956792524000196 [Google Scholar]
- M. Abatangelo, C. Cavaterra, M. Grasselli and H. Wu, Optimal distributed control for a Cahn–Hilliard–Darcy system with mass sources, unmatched viscosities and singular potential. arXiv preprint (full length version with detailed computations) (2024). arXiv:2308.01569v3 [math.OC] [Google Scholar]
- F. Tröltzsch, Optimal Control of Partial Differential Equations. Theory, Methods and Applications, Graduate Studies in Mathematics, Vol. 112. AMS, Providence (2010). [CrossRef] [Google Scholar]
- E. Casas, J.C. de los Reyes and F. Tröltzsch, Sufficient second-order optimality conditions for semilinear control problems with pointwise state constraints. SIAM J. Optim. 19 (2008) 616–643. [CrossRef] [MathSciNet] [Google Scholar]
- A. Giorgini, A. Miranville and R. Temam, Uniqueness and regularity for the Navier–Stokes–Cahn–Hilliard system. SIAM J. Math. Anal. 51 (2019) 2535–2574. [CrossRef] [MathSciNet] [Google Scholar]
- H. Abels, On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities. Arch. Ration. Mech. Anal. 194 (2009) 463–506. [Google Scholar]
- J.-N. He and H. Wu, Global well-posedness of a Navier–Stokes–Cahn–Hilliard system with chemotaxis and singular potential in 2D. J. Differ. Equ. 297 (2021) 47–80. [CrossRef] [Google Scholar]
- J. Simon, Compact sets in the space Lp (0, T; B). Ann. Mat. Pura Appl. 146 (1987) 65–96. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.