Open Access
Issue
ESAIM: COCV
Volume 30, 2024
Article Number 44
Number of page(s) 45
DOI https://doi.org/10.1051/cocv/2024035
Published online 24 May 2024
  1. P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion. Technical report, EECS Department, University of California, Berkeley (1988). [Google Scholar]
  2. F. Catté, P.-L. Lions, J.-M. Morel and T. Coll, Image selective smoothing and edge detection by nonlinear diffusion. SIAM J. Numer. Anal. 29 (1992) 182–193. [CrossRef] [MathSciNet] [Google Scholar]
  3. S. Kichenassamy, The Perona–Malik paradox. SIAM J. Appl. Math. 57 (1997) 1328–1342. [CrossRef] [MathSciNet] [Google Scholar]
  4. E. De Giorgi, Conjectures Concerning Some Evolution Problems. Vol. 81. (1996) 255–268. [Google Scholar]
  5. S. Esedoglu, An analysis of the Perona–Malik scheme. Commun. Pure Appl. Math. 54 (2001) 1442–1487. [CrossRef] [Google Scholar]
  6. H. Amann, Time-delayed Perona–Malik type problems. Acta Math. Univ. Comenian. (N.S.) 76 (2007) 15–38. [MathSciNet] [Google Scholar]
  7. P. Guidotti, A new nonlocal nonlinear diffusion of image processing. J. Differ. Equ. 246 (2009) 4731–4742. [CrossRef] [Google Scholar]
  8. F. Smarrazzo and A. Tesei, Degenerate regularization of forward-backward parabolic equations: the regularized problem Arch. Ration. Mech. Anal. 204 (2012) 85–139. [CrossRef] [MathSciNet] [Google Scholar]
  9. M. Gobbino and N. Picenni, A quantitative variational analysis of the staircasing phenomenon for a second order regularization of the Perona–Malik functional. Trans. Amer. Math. Soc. 376 (2023) 5307–5375. [CrossRef] [MathSciNet] [Google Scholar]
  10. L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs (2000). [Google Scholar]
  11. G. Alberti and S. Müller, A new approach to variational problems with multiple scales. Commun. Pure Appl. Math. 54 (2001) 761–825. [CrossRef] [Google Scholar]
  12. M. Ghisi and M. Gobbino, Gradient estimates for the Perona–Malik equation. Math. Ann. 337 (2007) 557–590. [CrossRef] [MathSciNet] [Google Scholar]
  13. M. Morini and M. Negri, Mumford–Shah functional as Γ-limit of discrete Perona–Malik energies. Math. Models Methods Appl. Sci. 13 (2003) 785–805. [CrossRef] [MathSciNet] [Google Scholar]
  14. G. Bellettini, M. Novaga, M. Paolini and C. Tornese, Convergence of discrete schemes for the Perona–Malik equation. J. Differ. Equ. 245 (2008) 892–924. [CrossRef] [Google Scholar]
  15. G. Bellettini, M. Novaga, M. Paolini and C. Tornese, Classification of equilibria and Γ-convergence for the discrete Perona–Malik functional. Calcolo 46 (2009) 221–243. [CrossRef] [MathSciNet] [Google Scholar]
  16. G. Bellettini, M. Novaga and M. Paolini, Convergence for long-times of a semidiscrete Perona–Malik equation in one dimension. Math. Models Methods Appl. Sci. 21 (2011) 241–265. [CrossRef] [MathSciNet] [Google Scholar]
  17. M. Colombo and M. Gobbino, Slow time behavior of the semidiscrete Perona–Malik scheme in one dimension. SIAM J. Math. Anal. 43 (2011) 2564–2600. [CrossRef] [MathSciNet] [Google Scholar]
  18. A. Braides and V. Vallocchia, Static, quasistatic and dynamic analysis for scaled Perona–Malik functionals. Acta Appl. Math. 156 (2018) 79–107. [CrossRef] [MathSciNet] [Google Scholar]
  19. M. Gobbino and N. Picenni, Monotonicity properties of limits of solutions to the semidiscrete scheme for a class of Perona–Malik type equations. SIAM J. Math. Anal. 56 (2024) 2034–2062. [CrossRef] [MathSciNet] [Google Scholar]
  20. M. Gobbino and M.G. Mora, Finite-difference approximation of free-discontinuity problems. Proc. Roy. Soc. Edinburgh Sect. A 131 (2001) 567–595. [CrossRef] [MathSciNet] [Google Scholar]
  21. R. Alicandro, A. Braides and M.S. Gelli, Free-discontinuity problems generated by singular perturbation. Proc. Roy. Soc. Edinburgh Sect. A 128 (1998) 1115–1129. [CrossRef] [MathSciNet] [Google Scholar]
  22. G. Bellettini and G. Fusco, The Γ-limit and the related gradient flow for singular perturbation functionals of Perona-Malik type. Trans. Amer. Math. Soc. 360 (2008) 4929–4987. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.