Open Access
Issue |
ESAIM: COCV
Volume 30, 2024
|
|
---|---|---|
Article Number | 43 | |
Number of page(s) | 29 | |
DOI | https://doi.org/10.1051/cocv/2024032 | |
Published online | 24 May 2024 |
- B. Azmi, Stabilization of 3D Navier–Stokes equations to trajectories by finite-dimensional RHC. Appl. Math. Optim. 86 (2022) art38. [CrossRef] [Google Scholar]
- A. Azouani and E.S. Titi, Feedback control of nonlinear dissipative systems by finite determining parameters – a reaction-diffusion paradigm. Evol. Equ. Control Theory 3 (2014) 579–594. [CrossRef] [MathSciNet] [Google Scholar]
- V. Barbu, Feedback stabilization of Navier–Stokes equations. ESAIM Control Optim. Calc. Var. 9 (2003) 197–206. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- V. Barbu and R. Triggiani, Internal stabilization of Navier–Stokes equations with finite-dimensional controllers. Indiana Univ. Math. J. 53 (2004) 1443–1494. [CrossRef] [MathSciNet] [Google Scholar]
- K. Kunisch, S.S. Rodrigues and D. Walter, Learning an optimal feedback operator semiglobally stabilizing semilinear parabolic equations. Appl. Math. Optim. 84 (2021) 277–318. [CrossRef] [MathSciNet] [Google Scholar]
- A. Khapalov, Mobile point controls versus locally distributed ones for the controllability of the semilinear parabolic equation. SIAM J. Control Optim. 40 (2001) 1095–7138. [Google Scholar]
- C. Castro and E. Zuazua, Unique continuation and control for the heat equation from an oscillating lower dimensional manifold. Siam J. Control Optim. 43 (2005) 1400–1434. [CrossRef] [MathSciNet] [Google Scholar]
- S. Jaffard, M. Tucsnak and E. Zuazua, Singular internal stabilization of the wave equation. J. Differ. Equ. 145 (1998) 184–215. [CrossRef] [Google Scholar]
- M. Badra and T. Takahashi, On the Fattorini criterion for approximate controllability and stabilizability of parabolic systems. ESAIM Control Optim. Calc. Var. 20 (2014) 924–956. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- J.-P. Raymond, Stabilizability of infinite-dimensional systems by finite-dimensional controls. Comput. Methods Appl. Math. 19 (2019) 797–811. [CrossRef] [MathSciNet] [Google Scholar]
- I. Lasiecka and R. Triggiani, Numerical approximations of algebraic Riccati equations for abstract systems modelled by analytic semigroups, and applications. Math. Comput. 57 (1991) 639–662. [CrossRef] [Google Scholar]
- I. Lasiecka and R. Triggiani, Uniform convergence of the solutions to Riccati equations arising in boundary/point control problems, in Stochastic Theory and Adaptive Control, Vol. 184 of Lecture Notes in Control and Information Sciences. Springer, Berlin, Heidelberg (1992) 285–305. [CrossRef] [Google Scholar]
- I. Lasiecka and R. Triggiani, Exact null controllability of structurally damped and thermo-elastic parabolic models. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei, Serie 9, Mat. Appl. 9 (1998) 43–69. [Google Scholar]
- I. Lasiecka and R. Triggiani, Algebraic Riccati equations arising from systems with unbounded input-solution operator: applications to boundary control problems for wave and plate equations. Nonlinear Anal. 20 (1993) 659–695. [CrossRef] [MathSciNet] [Google Scholar]
- S.S. Rodrigues, Oblique projection output-based feedback stabilization of nonautonomous parabolic equations. Automatica J. IFAC 129 (2021) 109621. [CrossRef] [Google Scholar]
- J.B. Conway, A Course in Functional Analysis. Vol. 96 of GTM, 2nd edn. Springer (1990). [Google Scholar]
- V. Barbu, S.S. Rodrigues and A. Shirikyan, Internal exponential stabilization to a nonstationary solution for 3D Navier–Stokes equations. SIAM J. Control Optim. 49 (2011) 1454–1478. [CrossRef] [MathSciNet] [Google Scholar]
- J. Zowe and S. Kurcyusz, Regularity and stability for the mathematical programming problem in Banach spaces. Appl. Math. Optim. 5 (1979) 49–62. [Google Scholar]
- R. Datko, Uniform asymptotic stability of evolutionary processes in a Banach space. SIAM J. Math. Anal. 3 (1972) 428–445. [CrossRef] [MathSciNet] [Google Scholar]
- F. Demengel and G. Demengel, Functional Spaces for the Theory of Elliptic Partial Differential Equations. Universitext. Springer (2012). [CrossRef] [Google Scholar]
- S.S. Rodrigues, Semiglobal oblique projection exponential dynamical observers for nonautonomous semilinear parabolic-like equations. J. Nonlin. Sci. 31 (2021) 100. [CrossRef] [Google Scholar]
- A. Malqvist, A. Persson and T. Stillfjord, Multiscale differential Riccati equations for linear quadratic regulator problems. SIAM J. Sci. Comput. 40 (2018) A2406–A2426. [CrossRef] [Google Scholar]
- T. Breiten, K. Kunisch and S.S. Rodrigues, Feedback stabilization to nonstationary solutions of a class of reaction diffusion equations of FitzHugh–Nagumo type. SIAM J. Control Optim. 55 (2017) 2684–2713. [CrossRef] [MathSciNet] [Google Scholar]
- A. Kröner and S.S. Rodrigues, Remarks on the internal exponential stabilization to a nonstationary solution for 1D Burgers equations. SIAM J. Control Optim. 53 (2015) 1020–1055. [CrossRef] [MathSciNet] [Google Scholar]
- D. Phan and S.S. Rodrigues, Stabilization to trajectories for parabolic equations. Math. Control Signals Syst. 30 (2018) 11. [CrossRef] [Google Scholar]
- Kw.E. Chu, The solution of the matrix equations AXB – CXD = E and (Y A – DZ, Y C – BZ) = (E, F). Linear Algebra Appl. 93 (1987) 93–105. [CrossRef] [MathSciNet] [Google Scholar]
- Th. Penzl, Numerical solution of generalized Lyapunov equations. Adv. Comput. Math. 8 (1998) 33–48. [CrossRef] [MathSciNet] [Google Scholar]
- P. Benner, J.-R. Li and Th. Penzl, Numerical solution of large-scale Lyapunov equations, Riccati equations, and linear-quadratic optimal control problems. Numer. Linear Algebra Appl. 15 (2008) 755–777. [Google Scholar]
- J.-R. Li and J. White, Low rank solution of Lyapunov equations. SIAM J. Matrix Anal. Appl. 24 (2002) 260–280. [CrossRef] [MathSciNet] [Google Scholar]
- T. Breiten, S. Dolgov and M. Stoll, Solving differential Riccati equations: a nonlinear space-time method using tensor trains. Numer. Algebra Control Optim. 11 (2021) 407–429. [Google Scholar]
- J. Heiland, A differential-algebraic Riccati equation for applications in flow control. SIAM J. Control Optim. 54 (2016) 718–739. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.