Open Access
Volume 30, 2024
Article Number 23
Number of page(s) 40
Published online 04 April 2024
  1. J. Cheeger, A lower bound for the smallest eigenvalue of the Laplacian. A Symposium in Honor of Salomon Bochner (1970) 195–199. [Google Scholar]
  2. E. Parini, An introduction to the Cheeger problem. Surv. Math. Appl. 6 (2011) 9–21. [MathSciNet] [Google Scholar]
  3. F. Alter and V. Caselles, Uniqueness of the Cheeger set of a convex body. Nonlinear Anal. 70 (2009) 32–44. [Google Scholar]
  4. B. Kawohl and T. Lachand-Robert, Characterization of Cheeger sets for convex subsets of the plane. Pacific J. Math. 225 (2006) 103–118. [Google Scholar]
  5. G. Strang, Maximal flow through a domain. Math. Programm. 26 (1983) 123–143. [Google Scholar]
  6. B. Appleton and H. Talbot, Globally minimal surfaces by continuous maximal flows. IEEE Trans. Pattern Anal. Mach. Intell. 28 (2006) 106–118. [Google Scholar]
  7. J.B. Keller, Plate failure under pressure. SIAM Rev. 22 (1980) 227–228. [Google Scholar]
  8. W. Blaschke, Eine frage über konvexe Körper. Jahresber. Deutsch. Math. Ver. 25 (1916) 121–125. [Google Scholar]
  9. L. Santalo, Sobre los sistemas completos de desigualdades entre treselementos de una figura convexa plana. Math. Notae 17 (1961) 82–104. [Google Scholar]
  10. A. Delyon, A. Henrot and Y. Privat, The missing (A, D, r) diagram. Ann. Inst. Fourier (Grenoble) 72 (2022) 1941–1992. [Google Scholar]
  11. K. Böröczky, Jr., M.A. Hernández Cifre and G. Salinas, Optimizing area and perimeter of convex sets for fixed circumradius and inradius. Monatsh. Math. 138 (2–3) 95–110. [Google Scholar]
  12. M.A. Hernández Cifre, Is there a planar convex set with given width, diameter, and inradius? Am. Math. Monthly 107 (2000) 893–900. [Google Scholar]
  13. M.A. Hernández Cifre, Optimizing the perimeter and the area of convex sets with fixed diameter and circumradius. Arch. Math. (Basel) 79 (2002) 147–157. [Google Scholar]
  14. M.A. Hernández Cifre and G. Salinas, Some optimization problems for planar convex figures. Vol. 70, part I. IV International Conference in “Stochastic Geometry, Convex Bodies, Empirical Measures & Applications to Engineering Science, Vol. I (Tropea, 2001) (2002) 395–405. [Google Scholar]
  15. M.A. Hernández Cifre, G. Salinas and S. Gomis, Complete systems of inequalities. J. Inequal. Pure Appl. Math. 2 (2001). [Google Scholar]
  16. M.A. Hernández Cifre and S. Gomis, The missing boundaries of the Santalo diagrams for the cases (d, w, R) and (w, R, r). Discrete Comput. Geom. 23 (2000) 381–388. [Google Scholar]
  17. R. Brandenberg and B. Gonzalez Merino, A complete 3-dimensional Blaschke-Santaló diagram. Math. Inequal. Appl. 20 (2107) 301–348. [Google Scholar]
  18. R. Brandenberg and B.G. Merino. On (r, d, R)-Blaschke-Santaló diagrams with regular k-gon gauges. Rev. Real Acad. Ciencias Exactas, Físicas Naturales Ser. A, Mat. (2022) in press. [Google Scholar]
  19. I. Ftouhi, Optimal description of Blaschke-Santaló diagrams via numerical shape optimization., 2022, preprint. [Google Scholar]
  20. I. Ftouhi and A. Henrot, The diagram (λ1, μ1). Math. Rep. (Bucur.) 24 (2022) 159–177. [Google Scholar]
  21. I. Ftouhi and J. Lamboley, Blaschke—Santalo diagram for volume, perimeter, and first Dirichlet eigenvalue. SIAM J. Math. Anal. 53 (2021) 1670–1710. [Google Scholar]
  22. I. Lucardesi and D. Zucco, On Blaschke-Santalo diagrams for the torsional rigidity and the first Dirichlet eigenvalue. Ann. Mat. Pura Appl. 201 (2022) 175–201. [Google Scholar]
  23. I. Ftouhi, On the Cheeger inequality for convex sets. J. Math. Anal. Appl. 504 (2021) 26. [Google Scholar]
  24. I. Ftouhi, Complete systems of inequalities relating the perimeter, the area and the Cheeger constant of planar domains. Commun. Contemp. Math. 25 (2023). [Google Scholar]
  25. P.R. Scott and P.W. Awyong, Inequalities for convex sets. J. Inequal. Pure Appl. Math. 1 (2000) Article 6. [Google Scholar]
  26. R. Schneider, Convex Bodies: The Brunn—Minkowski Theory, 2nd expanded edn. Cambridge University Press (2013). [Google Scholar]
  27. T. Jahn, Extremal radii, diameter and minimum width in generalized Minkowski spaces. Rocky Mountain J. Math. 47 (2017) 825–848. [Google Scholar]
  28. S. Larson, Corrigendum to A bound for the perimeter of inner parallel bodies [J. Funct. Anal. 271 (3) (2016) 610–619]. J. Funct. Anal. 279 (2020) 108574. [Google Scholar]
  29. M. Yamanouti, Notes on closed convex figures. Proc. Phys.-Math. Soc. Japan, III. Ser. 14 (1932) 605–609. [Google Scholar]
  30. P. Valtr, Probability that n random points are in convex position. Discrete Comput. Geom. 13 (1995) 637–643. [Google Scholar]
  31. K.R. Anderson, A reevaluation of an efficient algorithm for determining the convex hull of a finite planar set. Inform. Process. Lett. 7 (1978) 53–55. [Google Scholar]
  32. V. Sander, [Accessed: 31/01/2024]. [Google Scholar]
  33. P.R.S. Antunes and A. Henrot, On the range of the first two Dirichlet and Neumann eigenvalues of the Laplacian. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 467 (2011) 1577–1603. [Google Scholar]
  34. B. Bogosel, G. Buttazzo and E. Oudet, On the numerical approximation of blaschke-santaló diagrams using centroidal voronoi tessellations, 2023. [Google Scholar]
  35. B. Bogosel, D. Bucur and I. Fragalà, Phase field approach to optimal packing problems and related Cheeger clusters. Appl. Math. Optim. 81 (2020) 63–87. [Google Scholar]
  36. F.P. Preparata and M.I. Shamos, Computational Geometry. Texts and Monographs in Computer Science. Springer-Verlag, New York (1985). [Google Scholar]
  37. A. Henrot and M. Pierre, Shape Variation and Optimization. Vol. 28 of EMS Tracts in Mathematics. European Mathematical Society (EMS), Zürich (2018). [Google Scholar]
  38. M. Henk and G.A. Tsintsifas, Some inequalities for planar convex figures. Elem. Math. 49 (1994) 120–125. [Google Scholar]
  39. E. Parini, Reverse Cheeger inequality for planar convex sets. J. Convex Anal. 24 (2017) 107–122. [Google Scholar]
  40. M. van den Berg, G. Buttazzo and A. Pratelli, On relations between principal eigenvalue and torsional rigidity. Commun. Contemp. Math. 23 (2021) Paper No. 2050093, 28. [Google Scholar]
  41. T. Kubota, Einige ungleischheitsbezichungen über eilinien und eiflachen. Sci. Rep. Tohoku Univ. Ser. 12 (1923) 45–65. [Google Scholar]
  42. M. Sholander, On certain minimum problems in the theory of convex curves. Trans. Amer. Math. Soc. 73 (1952) 139–173. [Google Scholar]
  43. T. Bonnesen and W. Fenchel, Theory of Convex Bodies. BCS Associates, Moscow, ID (1987). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.