Open Access
Issue
ESAIM: COCV
Volume 30, 2024
Article Number 69
Number of page(s) 19
DOI https://doi.org/10.1051/cocv/2024054
Published online 07 October 2024
  1. J. Dugundji and H.A. Antosiewicz, Parallelizable flows and Lyapunov’s second method. Ann. Math. 73 (1961) 543–555. [CrossRef] [MathSciNet] [Google Scholar]
  2. O. Hájek, Parallelizability revisited. Proc. Amer. Math. Soc. 27 (1971) 77–84. [CrossRef] [MathSciNet] [Google Scholar]
  3. J.A. Souza and H.V.M. Tozatti, Prolongational limit sets of control systems, J. Diff. Equ. 254 (2013) 2183–2195. [CrossRef] [Google Scholar]
  4. J.A. Souza and H.V.M. Tozatti, Some aspects of stability for semigroup actions and control systems, J. Dyn. Diff. Equ. 26 (2014) 631–654. [CrossRef] [Google Scholar]
  5. J.A. Souza, Sufficient conditions for dispersiveness of invariant control affine systems on the Heisenberg group. Syst. Control Lett. 124 (2019) 68–74. [CrossRef] [Google Scholar]
  6. A.L. Marques, H.M.V. Tozatti, J.A. Souza, Higher prolongations of control affine systems: absolute stability and generalized recurrence. SIAM J. on Control Optim. 58 (2020) 3019–3040. [CrossRef] [MathSciNet] [Google Scholar]
  7. J.A. Souza, Parallelizability of control systems. Math. Control Signals Syst. 33 (2021) 259–278. [CrossRef] [Google Scholar]
  8. V. Ayala and L.A.B. San Martin, Controllability properties of a class of control systems on Lie groups, Lecture Note in Control and Inform. Sci. 258. Springer, Berlin (2001) 83–92. [Google Scholar]
  9. V. Ayala and J. Tirao, Linear Control Systems on Lie Groups and Controllability, edited by G. Ferreyra et al. American Mathematical Society, Providence, RI (1999). [Google Scholar]
  10. V. Ayala, A.J. Da Silva and G. Zsigmond, Control sets of linear systems on Lie groups. Nonlinear Differ. Equ. Appl. 24 (2017) 1021–9722. [CrossRef] [Google Scholar]
  11. A.J. Da Silva, Outer invariance entropy for linear systems on Lie groups. J. Dyn. Control Syst. 52 (2014) 3917–3934. [Google Scholar]
  12. A.J. Da Silva, Controllability of linear systems on solvable Lie groups. SIAM J. Control Optim. 54 (2016) 372–390. [CrossRef] [MathSciNet] [Google Scholar]
  13. Ph. Jouan, Controllability of linear systems on Lie groups. J. Dyn. Control Syst. 17 (2011) 591–616. [CrossRef] [MathSciNet] [Google Scholar]
  14. Ph. Jouan, Equivalence of control systems with linear systems on Lie groups and homogeneous spaces. ESAIM Control Optim. Calc. Var. 16 (2010) 956–973. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  15. Ph. Jouan and M. Dath, Controllability of linear systems on low dimensional nilpotent and solvable Lie groups. J. Dyn. Control Syst. 22 (2016) 207–225. [CrossRef] [MathSciNet] [Google Scholar]
  16. L.A.B. San Martin, Algebras de Lie, 2nd edn. Editora Unicamp, Campinas (2010). [Google Scholar]
  17. J.A. Souza, Decomposition of linear systems on disconnected Lie groups. J. Dyn. Diff. Equ. (2023). https://doi.org/10.1007/s10884-023-10287-x [Google Scholar]
  18. F. Colonius and W. Kliemann, The Dynamics of Control. Birkhäuser, Boston (2000). [CrossRef] [Google Scholar]
  19. J.A. Souza, Poisson stability and periodicity of control affine systems. J. Optim. Theory Appl. 185 (2020) 72–79. [CrossRef] [MathSciNet] [Google Scholar]
  20. V. Jurdjevic, Geometric Control Theory. Cambridge University Press, Cambridge (1997). [Google Scholar]
  21. E.E. Sontag, Mathematical Control Theory. Springer-Verlag, New York (1990). [CrossRef] [Google Scholar]
  22. J.A. Souza, Prolongational controllability and weak attraction for control affine systems. J. Dyn. Control Syst. 27 (2021) 335–353. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.