Open Access
Issue
ESAIM: COCV
Volume 30, 2024
Article Number 78
Number of page(s) 21
DOI https://doi.org/10.1051/cocv/2024063
Published online 07 October 2024
  1. D. Alvarez-Melis and T. Jaakkola, Gromov–Wasserstein alignment of word embedding spaces, in Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing (2018) 1881–1890. [CrossRef] [Google Scholar]
  2. C. Bunne, D. Alvarez-Melis, A. Krause and S. Jegelka, Learning generative models across incomparable spaces, in International Conference on Machine Learning (2019) 851–861. [Google Scholar]
  3. S. Chowdhury, D. Miller and T. Needham, Quantized Gromov–Wasserstein, in Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Springer (2021) 811–827. [Google Scholar]
  4. P. Demetci, R. Santorella, B. Sandstede, W.S. Noble and R. Singh, Scot: single-cell multi-omics alignment with optimal transport. J. Computat. Biol. 29 (2022) 3–18. [CrossRef] [Google Scholar]
  5. G. Peyré, M. Cuturi and J. Solomon, Gromov–Wasserstein averaging of kernel and distance matrices, in International Conference on Machine Learning (2016) 2664–2672. [Google Scholar]
  6. H. Xu, D. Luo, H. Zha and L.C. Duke, Gromov–Wasserstein learning for graph matching and node Embedding, in International Conference on Machine Learning (2019) 6932–6941. [Google Scholar]
  7. F. Mémoli and T. Needham, Distance distributions and inverse problems for metric measure spaces. Stud. Appl. Math. 149 (2022) 943–1001. [CrossRef] [MathSciNet] [Google Scholar]
  8. T. Dumont, T. Lacombe and F.-X. Vialard, On the existence of Monge maps for the Gromov–Wasserstein problem. Found. Computat. Math. (2024) 1–48. [Google Scholar]
  9. Y.H. Hur, W. Guo and T. Liang, Reversible Gromov–Monge sampler for simulation-based inference. SIAM J. Math. Data Sci. 6 (2024) 283–310. [CrossRef] [MathSciNet] [Google Scholar]
  10. A. Salmona, J. Delon and A. Desolneux, Gromov–Wasserstein distances between Gaussian distributions. J. Appl. Probab. 59 (2022) 1178–1198. [CrossRef] [MathSciNet] [Google Scholar]
  11. T. Vayer, A contribution to optimal transport on incomparable spaces. Preprint arXiv:2011.04447 (2020). [Google Scholar]
  12. Z. Zhang, Y. Mroueh, Z. Goldfeld and B. Sriperumbudur, Cycle consistent probability divergences across different spaces, in International Conference on Artificial Intelligence and Statistics. PMLR (2022) 7257–7285. [Google Scholar]
  13. G. Peyré and M. Cuturi, Computational optimal transport. Found. Trends Mach. Learn. 11 (2019) 355–607. [CrossRef] [Google Scholar]
  14. C. Villani, Optimal Transport: Old and New, Vol. 338. Springer Science & Business Media (2008). [Google Scholar]
  15. Y.H. Hur, W. Guo and T. Liang, Reversible Gromov–Monge sampler for simulation-based inference. Preprint arXiv:2109.14090v3 (2022). [Google Scholar]
  16. L. Ambrosio, Lecture notes on optimal transport problems, in Mathematical Aspects of Evolving Interfaces. Springer (2003) 1–52. [Google Scholar]
  17. A. Pratelli, On the equality between Monge’s infimum and Kantorovich’s minimum in optimal mass transportation, in Annales de l’Institut Henri Poincare (B) Probability and Statistics, Vol. 43. Elsevier (2007) 1–13. [CrossRef] [Google Scholar]
  18. K.-T. Sturm, The Space of Spaces: Curvature Bounds and Gradient Flows on the Space of Metric Measure Spaces, Vol. 290. Memoirs of the American Mathematical Society (2023). [Google Scholar]
  19. Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions. Commun. Pure Appl. Math. 44 (1991) 375–417. [Google Scholar]
  20. S. Chowdhury and F. Mémoli, Distances and isomorphism between networks: stability and convergence of network invariants. J. Appl. Computat. Topol. 7 (2022) 243–361. [Google Scholar]
  21. S. Chowdhury and T. Needham, Gromov–Wasserstein averaging in a Riemannian framework. preprint arXiv:1910.04308 (2019). [Google Scholar]
  22. K.-T. Sturm, On the geometry of metric measure spaces. Acta Mathematica 196 (2006) 65–131. [CrossRef] [MathSciNet] [Google Scholar]
  23. R. Al-Aifari, I. Daubechies and Y. Lipman, Continuous Procrustes distance between two surfaces. Commun. Pure Appl. Math. 66 (2013) 934–964. [CrossRef] [Google Scholar]
  24. D.M. Boyer, Y. Lipman, E. St Clair, J. Puente, B.A. Patel, T. Funkhouser, J. Jernvall and I. Daubechies, Algorithms to automatically quantify the geometric similarity of anatomical surfaces. Proc. Natl. Acad. Sci. U.S.A. (2011). [Google Scholar]
  25. S. Haker, L. Zhu, A. Tannenbaum and S. Angenent, Optimal mass transport for registration and warping. Int. J. Comput. Vis. 60 (2004) 225–240. [CrossRef] [Google Scholar]
  26. F. Mémoli, On the use of Gromov–Hausdorff distances for shape comparison, in Proceedings of Point Based Graphics (2007). [Google Scholar]
  27. S. Chen, S. Lim, F. Mémoli, Z. Wan and Y. Wang, Weisfeiler–Lehman meets Gromov–Wasserstein, in International Conference on Machine Learning. PMLR (2022) 3371–3416. [Google Scholar]
  28. S. Chowdhury and F. Mémoli, The Gromov–Wasserstein distance between networks and stable network invariants. Inform. Inference 8 (2019) 757–787. [CrossRef] [Google Scholar]
  29. S. Chowdhury, T. Needham, E. Semrad, B. Wang and Y. Zhou, Hypergraph co-optimal transport: Metric and categorical properties. J. Appl. Computat. Topol. (2023) 1–60. [Google Scholar]
  30. V. Titouan, I. Redko, R. Flamary and N. Courty, Co-optimal transport. Adv. Neural Inform. Process. Syst. 33 (2020) 17559–17570. [Google Scholar]
  31. H. Xu, D. Luo and L. Carin, Scalable Gromov–Wasserstein learning for graph partitioning and matching. Adv. Neural Inform. Process. Syst. 32 (2019). [Google Scholar]
  32. S. Chowdhury and T. Needham, Generalized spectral clustering via Gromov-Wasserstein learning, in International Conference on Artificial Intelligence and Statistics. PMLR (2021) 712–720. [Google Scholar]
  33. F. Mémoli, Gromov–Wasserstein distances and the metric approach to object matching. Found. Computat. Math. 11 (2011) 417–487. [CrossRef] [Google Scholar]
  34. F.W. Lawvere, Metric spaces, generalized logic, and closed categories. Rend. Semin. Maté. Fis. Milano 43 (1973) 135–166. [CrossRef] [Google Scholar]
  35. T. Vayer, R. Flamary, R. Tavenard, L. Chapel and N. Courty, Sliced Gromov–Wasserstein, in Advances in Neural Information Processing Systems (NeurIPS) (2019) 32. [Google Scholar]
  36. N. Bonneel, J. Rabin, G. Peyré and H. Pfister, Sliced and Radon Wasserstein barycenters of measures. J. Math. Imaging Vis. 51 (2015) 22–45. [CrossRef] [Google Scholar]
  37. R. Beinert, C. Heiss and G. Steidl, On assignment problems related to Gromov-Wasserstein distances on the real line. Preprint arXiv:2205.09006 (2022). [Google Scholar]
  38. W. Gangbo, The Monge mass transfer problem and its applications. Contemp. Math. 226 (1999) 79–104. [CrossRef] [Google Scholar]
  39. H.L. Royden, Real Analysis, Vol. 3. Macmillan, New York (1968). [Google Scholar]
  40. Y. Brenier and W. Gangbo, lp approximation of maps by diffeomorphisms. Calc. Variat. Part. Differ. Eq. 16 (2003) 147–164. [CrossRef] [Google Scholar]
  41. H. Maron and Y. Lipman, (Probably) concave graph matching. Adv. Neural Inform. Process. Syst. 31 (2018). [Google Scholar]
  42. D. Alvarez-Melis, S. Jegelka and T.S. Jaakkola, Towards optimal transport with global invariances, in The 22nd International Conference on Artificial Intelligence and Statistics. PMLR (2019) 1870–1879. [Google Scholar]
  43. H.P. Benson, Concave programming, in Encyclopedia of Optimization. Springer (2001) 315–319. [Google Scholar]
  44. F. Mémoli, Gromov–Hausdorff distances in Euclidean spaces, in IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2008. CVPRW’08. IEEE (2008) 1–8. [Google Scholar]
  45. D. Burago, Y.D. Burago and S. Ivanov, A Course in Metric Geometry, Vol. 33. American Mathematical Society (2001). [Google Scholar]
  46. P. Alestalo, D.A. Trotsenko and J. Väisälä, Isometric approximation. Isr. J. Math. 125 (2001) 61–82. [CrossRef] [Google Scholar]
  47. S. Majhi, J. Vitter and C. Wenk, Approximating Gromov–Hausdorff distance in Euclidean space. Computat. Geom. 116 (2024) 102034. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.