Open Access
Issue
ESAIM: COCV
Volume 30, 2024
Article Number 77
Number of page(s) 26
DOI https://doi.org/10.1051/cocv/2024066
Published online 07 October 2024
  1. J. Kinnunen and R. Korte, Characterizations for the Hardy inequality. Around the research of Vladimir Mazýa I, Int. Math. Ser. (N.Y.) 11, 239–254 (2010). [CrossRef] [Google Scholar]
  2. B. Opic and A. Kufner, Hardy-type Inequalities. Pitman Research Notes in Math., Vol. 219. Longman (1990). [Google Scholar]
  3. M. Marcus, V.J. Mizel and Y. Pinchover, On the best constant for Hardy’s inequality in ℝN. Trans. Amer. Math. Soc. 350 (1998) 3237–3255. [CrossRef] [MathSciNet] [Google Scholar]
  4. J.L. Lewis, Uniformly fat sets. Trans. Amer. Math. Soc. 308 (1988) 177–196. [CrossRef] [MathSciNet] [Google Scholar]
  5. A. Wannebo, Hardy inequalities. Proc. Amer. Math. Soc. 109 (1990) 85–95. [CrossRef] [MathSciNet] [Google Scholar]
  6. P. Hajłasz, Pointwise Hardy inequalities. Proc. Amer. Math. Soc. 127 (1999) 417–423. [CrossRef] [MathSciNet] [Google Scholar]
  7. F.G. Avkhadiev, Hardy type inequalities in higher dimensions with explicit estimate of constants. Lobachevskii J. Math. 21 (2006) 3–31. [MathSciNet] [Google Scholar]
  8. G. Goel, Y. Pinchover and G. Psaradakis, On the weighted Lp-Hardy inequality on domains in ℝN. Pure Appl. Funct. Anal. 7 (2020) 1025–1033. [Google Scholar]
  9. R.L. Frank and R. Seiringer, Non-linear ground state representations and sharp Hardy inequalities. J. Funct. Anal. 255 (2008) 3407–3430. [CrossRef] [MathSciNet] [Google Scholar]
  10. L. Brasco and E. Cinti, On fractional Hardy inequalities in convex sets. Discrete Contin. Dyn. Syst. 38 (2018) 4019–4040. [CrossRef] [MathSciNet] [Google Scholar]
  11. F. Bianchi, G. Stefani and A.C. Zagati, A geometrical approach to the sharp Hardy inequality in Sobolev–Slobodeckiĭ spaces (2024), preprint, available at https://cvgmt.sns.it/paper/6681/. [Google Scholar]
  12. F. Bianchi, L. Brasco and A.C. Zagati, On the sharp Hardy inequality in Sobolev-–Slobodeckiǐ spaces. Math. Ann. (2023). doi:10.1007s00208-023-02770-z. [Google Scholar]
  13. K. Bogdan and B. Dyda, The best constant in a fractional Hardy inequality. Math. Nachr. 284 (2011) 629–638. [CrossRef] [MathSciNet] [Google Scholar]
  14. S. Filippas, L. Moschini and A. Tertikas, Sharp trace Hardy–Sobolev–Maz’ya inequalities and the fractional Laplacian. Arch. Ration. Mech. Anal. 208 (2013) 109–161. [CrossRef] [MathSciNet] [Google Scholar]
  15. F. Sk, Characterization of fractional Sobolev–Poincaré and (localized) Hardy inequalities. J. Geom. Anal. 33 (2023). [Google Scholar]
  16. A. Ancona, On strong barriers and inequality of Hardy for domains in ℝn. J. London Math. Soc. 34 (1986) 274–290. [CrossRef] [Google Scholar]
  17. B. Devyver and Y. Pinchover, Optimal Lp Hardy-type inequalities. Ann. Inst. H. Poincaré. Anal. Non Lineaire 33 (2016) 93–118. [CrossRef] [MathSciNet] [Google Scholar]
  18. F. Bianchi, L. Brasco, F. Sk and A.C. Zagati, A note on the supersolution method for Hardy’s inequality. Rev. Mat. Complut. 37 (2024) 323–340. [CrossRef] [MathSciNet] [Google Scholar]
  19. L. Brasco, F. Prinari and A.C. Zagati, Sobolev embeddings and distance functions. Adv. Calc. Var. (2023). doi: 10.1515/acv-2023-0011. [Google Scholar]
  20. N.N. Lebedev, Special Functions and their Applications, revised edn., translated from the Russian and edited by R.A. Silverman. Unabridged and corrected republication. Dover Publications, Inc., New York (1972). [Google Scholar]
  21. I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products, 7th edn. Elsevier/Academic Press, Amsterdam (2007). [Google Scholar]
  22. L. Del Pezzo and A. Quaas, The fundamental solution of the fractional p-Laplacian, preprint, available at https://arxiv.org/abs/2307.07621. [Google Scholar]
  23. J. Korvenpää, T. Kuusi and G. Palatucci, A note on fractional supersolution. Electron. J. Differ. Eq. 2016 (2016) 1–9. [CrossRef] [Google Scholar]
  24. D.E. Edmunds and W.D. Evans, Fractional Sobolev Spaces and Inequalities. Cambridge Tracts in Mathematics, Vol. 230. Cambridge University Press, Cambridge (2023). [Google Scholar]
  25. C. Bucur and M. Squassina, An asymptotic expansion for the fractional p-Laplacian and for gradient-dependent nonlocal operators. Commun. Contemp. Math. 24 (2022) Paper No. 2150021. [CrossRef] [Google Scholar]
  26. F. del Teso, D. Gómez-Castro and J.L. Vázquez, Three representations of the fractional p-Laplacian: semigroup, extension and Balakrishnan formulas. Fract. Calc. Appl. Anal. 24 (2021) 966–1002. [CrossRef] [MathSciNet] [Google Scholar]
  27. A. Ponce, A new approach to Sobolev spaces and connections to Γ-convergence. Calc. Var. Part. Differ. Eq. 19 (2004) 229–255. [CrossRef] [Google Scholar]
  28. L. Brasco, F. Prinari and F. Sk, On Morrey’s inequality in Sobolev-Slobodeckiǐ spaces. J. Funct. Anal. 287 (2024) Paper No. 110598. [CrossRef] [Google Scholar]
  29. F. Bianchi and L. Brasco. The fractional Makai-Hayman inequality. Ann. Mat. Pura Appl. 201 (2022) 2471–2504. [CrossRef] [MathSciNet] [Google Scholar]
  30. L. Brasco, E. Lindgren and E. Parini, The fractional Cheeger problem. Interfaces Free Bound. 16 (2014) 419–458. [CrossRef] [MathSciNet] [Google Scholar]
  31. L. Lefton and D. Wei, Numerical approximation of the first eigenpair of the p-Laplacian using finite elements and the penalty method. Numer. Funct. Anal. Optim. 18 (1997) 389–399. [CrossRef] [MathSciNet] [Google Scholar]
  32. B. Kawohl and V. Fridman, Isoperimetric estimates for the first eigenvalue of the p-Laplace operator and the Cheeger constant. Comment. Math. Univ. Carolin. 44 (2003) 659–667. [MathSciNet] [Google Scholar]
  33. N. Fukagai, M. Ito and K. Narukawa, Limit as p → ∞ of p-Laplace eigenvalue problems and L-inequality of the Poincaré type. Differ. Integral Eq. 12 (1999) 183–206. [Google Scholar]
  34. P. Juutinen, P. Lindqvist and J.J. Manfredi, The ∞-eigenvalue problem. Arch. Rational Mech. Anal. 148 (1999) 89–105. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.