Open Access
Issue
ESAIM: COCV
Volume 30, 2024
Article Number 48
Number of page(s) 42
DOI https://doi.org/10.1051/cocv/2024036
Published online 11 June 2024
  1. M. Dalir and M. Bashour, Applications of fractional calculus. Appl. Math. Sci. 4 (2010) 1021–1032. [MathSciNet] [Google Scholar]
  2. K. Diethelm, The Analysis of Fractional Differential Equations. Springer, New York (2007). [Google Scholar]
  3. M. Rahimy, Applications of fractional differential equations. Appl. Math. Sci. 4 (2010) 2453–2461. [MathSciNet] [Google Scholar]
  4. S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives, Theory and Applications. Gordon and Breach Science Publishers, Yverdon, Switzerland (1987). [Google Scholar]
  5. W.M. Wonham, On a matrix Riccati equation of stochastic control. SIAM J. Control 6 (1968) 681–697. [CrossRef] [MathSciNet] [Google Scholar]
  6. J. Yong and X.Y. Zhou, Stochastic Controls: Hamiltonian Systems and HJB Equations. Springer, New York (1999). [Google Scholar]
  7. J. Sun and J. Yong, Stochastic Linear-Quadratic Optimal Control Theory: Open-Loop and Closed-Loop Solutions. Springer Briefs in Mathematics (2020). [CrossRef] [Google Scholar]
  8. J. Yong, Well-posedness and regularity of backward stochastic Volterra integral equations. Probab. Theory Related Fields 142 (2008) 2–77. [Google Scholar]
  9. N. Agram and B. Øksendal, Mallivain calculus and optimal control of stochastic Volterra equations. J. Optim. Theory Appl. 167 (2015) 1070–1094. [CrossRef] [MathSciNet] [Google Scholar]
  10. S. Chen and J. Yong, A linear quadratic optimal control problem for stochastic Volterra integral equations. Control Theory and Related Topics – In Memory of Professor Xunjing Li. Fudan University, China (2007) 44–66. [CrossRef] [Google Scholar]
  11. Y. Hamaguchi, Infinite horizon backward stochastic Volterra integral equations and discounted control problems. ESAIM Control Optim. Calc. Var. 27 (2021) 47. [Google Scholar]
  12. Y. Hamaguchi, On the maximum principle for optimal control problems of stochastic Volterra integral equations with delay. Appl. Math. Optim. 87 (2023) 42. [CrossRef] [Google Scholar]
  13. Y. Shi, T. Wang and J. Yong, Optimal control problems of forward-backward stochastic Volterra integral equations. Math. Control Relat. Fields 5 (2015) 613–649. [Google Scholar]
  14. Y. Shi, J. Wen and J. Xiong, Backward doubly stochastic Volterra integral equations and their applications J. Differ. Equ. 269 (2020) 6492–6528. [CrossRef] [Google Scholar]
  15. T. Wang, Linear quadratic control problems of stochastic Volterra integral equations. ESAIM Control Optim. Calc. Var. 24 (2018) 1849–1879. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  16. T. Wang, Necessary conditions of Pontraygin’s type for general controlled stochastic Volterra integral equations. ESAIM Control Optim. Calc. Var. 26 (2020) 29. [CrossRef] [EDP Sciences] [Google Scholar]
  17. T. Wang and H. Zhang, Optimal control problems of forward-backward stochastic Volterra integral equations with closed control regions. SIAM J. Control Optim. 55 (2017) 2574–2602. [CrossRef] [MathSciNet] [Google Scholar]
  18. E. Abi Jaber, E. Miller and H. Pham, Linear—quadratic control for a class of stochastic Volterra equations: solvability and approximation. Ann. Appl. Probab. 31 (2021) 2244–2274. [MathSciNet] [Google Scholar]
  19. S. Bonaccorsi, F. Confortola and E. Mastrogiacomo, Optimal control for stochastic Volterra equations with completely monotone kernels. SIAM J. Control Optim. 50 (2012) 748–789. [CrossRef] [MathSciNet] [Google Scholar]
  20. F. Confortola and E. Mastrogiacomo, Feedback optimal control for stochastic Volterra equations with completely monotone kernels. Math. Control Relat. Fields 5 (2015) 191–235. [CrossRef] [MathSciNet] [Google Scholar]
  21. E. Abi Jaber, E. Miller and H. Pham, Integral operator Riccati equations arising in stochastic Volterra control problems. SIAM J. Control Optim. 59 (2021) 1581–1603. [CrossRef] [MathSciNet] [Google Scholar]
  22. A.J. Pritchard and Y. You, Causal feedback optimal control for Volterra integral equations. SIAM J. Control Optim. 34 (1996) 1874–1890. [CrossRef] [MathSciNet] [Google Scholar]
  23. S. Han, P. Lin and J. Yong, Causal state feedback representation for linear quadratic optimal control problems of singular Volterra integral equations. Math. Control. Relat. Fields 13 (2021) 1282–1317. [Google Scholar]
  24. Y. Hamaguchi and T. Wang, Linear-quadratic stochastic Volterra controls. I. Causal feedback strategies. arXiv:2204.08333 (2022). [Google Scholar]
  25. H. Wang, J. Yong and C. Zhou, Linear-quadratic optimal controls for stochastic Volterra integral equations: causal state feedback and path-dependent Riccati equations. SIAM J. Control Optim. 61 (2023) 2595–2629. [CrossRef] [MathSciNet] [Google Scholar]
  26. J. Sun, X. Li and J. Yong, Open-loop and closed-loop solvabilities for stochastic linear quadratic optimal control problems. SIAM J. Control Optim. 54 (2016) 2274–2308. [Google Scholar]
  27. J. Sun and J. Yong, Linear quadratic stochastic differential games: open-loop and closed-loop saddle points. SIAM J. Control Optim. 52 (2014) 4082–4121. [CrossRef] [MathSciNet] [Google Scholar]
  28. Y. Hamaguchi, Variation of constants formulae for forward and backward stochastic Volterra integral equations. J. Differ. Equ. 343 (2023) 332–389. [CrossRef] [Google Scholar]
  29. G. Gripenberg, S.O. Londen and O. Staffans, Volterra Integral and Functional Equations. Vol. 34 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (1990). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.