Open Access
Issue
ESAIM: COCV
Volume 30, 2024
Article Number 49
Number of page(s) 30
DOI https://doi.org/10.1051/cocv/2024038
Published online 11 June 2024
  1. S. Balaji and S.P. Meyn, Multiplicative ergodicity and large deviations for an irreducible Markov chain. Stochast. Processes Applic. 90 (2000) 123–144. [Google Scholar]
  2. G.B. Di Masi and Ł. Stettner, On additive and multiplicative (controlled) Poisson equations. Banach Center Publ. 72 (2006) 57–70. [Google Scholar]
  3. R. Cavazos-Cadena and D. Hernández-Hernández, Necessary and sufficient conditions for a solution to the risk-sensitive Poisson equation on a finite state space. Syst. Control Lett. 58 (2009) 254–258. [Google Scholar]
  4. R. Cavazos-Cadena and D. Hernández-Hernández, Poisson equations associated with a homogeneous and monotone function: necessary and sufficient conditions for a solution in a weakly convex case. Nonlinear Anal. Theory Methods Applic. 72 (2010) 3303–3313. [Google Scholar]
  5. T.R. Bielecki, I. Cialenco and M. Pitera, Dynamic limit growth indices in discrete time. Stochast. Models 31 (2015) 494–523. [Google Scholar]
  6. Ł. Stettner, On an approximation of average cost per unit time impulse control of Markov processes. SIAM J. Control Optim. 60 (2022) 2115–2131. [Google Scholar]
  7. I. Kontoyiannis and S.P. Meyn, Spectral theory and limit theorems for geometrically ergodic Markov processes. Ann. Appl. Probab. (2003) 304–362. [Google Scholar]
  8. O. Hernández-Lerma and J.B. Lasserre, Further Topics on Discrete-time Markov Control Processes, Vol. 42. Springer Science & Business Media (1999). [Google Scholar]
  9. A. Biswas and S. Pradhan, Ergodic risk-sensitive control of Markov processes on countable state space revisited. ESAIM: COCV 28 (2022) 26. [Google Scholar]
  10. R. Cavazos-Cadena, Characterization of the optimal risk-sensitive average cost in denumerable Markov decision chains. Math. Oper. Res. 43 (2018) 1025–1050. [Google Scholar]
  11. A. Biswas and V.S. Borkar, Ergodic risk-sensitive control — a survey. Annu. Rev. Control 55 (2023) 118–141. [Google Scholar]
  12. D. Jelito, M. Pitera and L. Stettner, Long-run risk-sensitive impulse control. SIAM J. Control Optim. 58 (2020) 2446–2468. [Google Scholar]
  13. M. Pitera and Ł. Stettner, Long-run risk sensitive dyadic impulse control. Appl. Math. Optim. 84 (2021) 19–47. [Google Scholar]
  14. D. Jelito, M. Pitera and Ł. Stettner, Risk sensitive optimal stopping. Stochast. Processes Applic. 136 (2021) 125–144. [Google Scholar]
  15. I. Kontoyiannis and S.P. Meyn, Large deviations asymptotics and the spectral theory of multiplicatively regular Markov processes. Electron. J. Probab. 10 (2005) 61–123. [Google Scholar]
  16. H. Nagai, Optimal strategies for risk-sensitive portfolio optimization problems for general factor models. SIAM J. Control Optim. 41 (2003) 1779–1800. [Google Scholar]
  17. A. Arapostathis and A. Biswas, Infinite horizon risk-sensitive control of diffusions without any blanket stability assumptions. Stochast. Processes Applic. 128 (2018) 1485–1524. [Google Scholar]
  18. Ł. Stettner, Risk sensitive portfolio optimization. Math. Methods Oper. Res. 50 (1999) 463–474. [Google Scholar]
  19. M. Pitera and L. Stettner, Long run risk sensitive portfolio with general factors. Math. Methods Oper. Res. 83 (2016) 265–293. [Google Scholar]
  20. R. Cavazos-Cadena, The risk-sensitive Poisson equation for a communicating Markov chain on a denumerable state space. Kybernetika 45 (2009) 716–736. [Google Scholar]
  21. T.R. Bielecki and S.R. Pliska, Risk-sensitive dynamic asset management. Appl. Math. Optim. 39 (1999) 337–360. [Google Scholar]
  22. N. Bauerle and U. Rieder, Zero-sum risk-sensitive stochastic games. Stochast. Processes Applic. 127 (2017) 622–642. [Google Scholar]
  23. T.R. Bielecki and S.R. Pliska, Economic properties of the risk sensitive criterion for portfolio management. Rev. Account. Finance 2 (2003) 3–17. [Google Scholar]
  24. M. Kupper and W. Schachermayer, Representation results for law invariant time consistent functions. Math. Financial Econ. 2 (2009) 189–210. [Google Scholar]
  25. G.B. Di Masi and Ł. Stettner, Risk-sensitive control of discrete-time Markov processes with infinite horizon. SIAM J. Control Optim. 38 (1999) 61–78. [Google Scholar]
  26. S. Meyn and R. Tweedie, Markov Chains and Stochastic Stability. Springer (1996). [Google Scholar]
  27. J. Doob, Stochastic Processes. Wiley (1990). [Google Scholar]
  28. O. Hernández-Lerma and J.B. Lasserre, Discrete-time Markov Control Processes. Springer (1996). [Google Scholar]
  29. P. Dai Pra, L. Meneghini and W.J. Runggaldier, Connections between stochastic control and dynamic games. Math. Control Signals Syst. 9 (1996) 303–326. [Google Scholar]
  30. H. Föllmer and A. Schied, Stochastic finance. An introduction in discrete time. Vol. 27 of de Gruyter Studies in Mathematics extended ed. Walter de Gruyter & Co., Berlin (2004). [Google Scholar]
  31. P. Whittle, Risk-sensitive Optimal Control. Wiley, New York (1990). [Google Scholar]
  32. G.B. Di Masi and Ł. Stettner, Infinite horizon risk sensitive control of discrete time Markov processes under minorization property. SIAM J. Control Optim. 46 (2007) 231–252. [Google Scholar]
  33. G.B. Di Masi and Ł. Stettner, Infinite horizon risk sensitive control of discrete time Markov processes with small risk. Syst. Control Lett. 40 (2000) 15–20. [Google Scholar]
  34. S. Pliska, Introduction to Mathematical Finance — Discrete Time Models. Blackwell Publishers, Oxford (1999). [Google Scholar]
  35. J. Menaldi and M. Robin, On some ergodic impulse control problems with constraint. SIAM J. Control Optim. 56 (2018) 2690–2711. [Google Scholar]
  36. T. Duncan, B. Pasik-Duncan and Ł. Stettner, Adaptive control of discrete time Markov processes by the large deviations method. Applic. Math. 27 (2000) 265–285. [Google Scholar]
  37. M. Donsker and S. Varadhan, Asymptotic evaluation of certain Markov process expectations for large time, I. Commun. Pure Appl. Math. 28 (1975) 1–47. [Google Scholar]
  38. M. Donsker and S. Varadhan, Asymptotic evaluation of certain Markov process expectations for large time, III. Commun. Pure Appl. Math. 29 (1976) 389–461. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.