Open Access
Issue
ESAIM: COCV
Volume 30, 2024
Article Number 27
Number of page(s) 30
DOI https://doi.org/10.1051/cocv/2024016
Published online 09 April 2024
  1. L. Allen, B. Bolker, Y. Lou and N. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model. Disc. Cont. Dyn. Syst. 21 (2008) 1–20. [CrossRef] [Google Scholar]
  2. A. Friedman, Partial Differential Equations of Parabolic Type. Dover Pub., Mineola, New York (2008). [Google Scholar]
  3. R. Peng, Asymptotic profiles of the positive steady state for an SIS epidemic reaction–diffusion model. Part I. J. Diff. Equ. 247 (2009) 1096–1119. [CrossRef] [Google Scholar]
  4. Y. Wu and X. Zou, Asymptotic profiles of steady states for a diffusive SIS epidemic model with mass action infection mechanism. J. Diff. Equ. 261 (2016) 4424–4447. [CrossRef] [Google Scholar]
  5. P. Albano and D. Tataru, Unique continuation for second-order parabolic operators at the initial time. Proc. Am. Math. Soc. 132 (2004) 1077–1085. [Google Scholar]
  6. H. Koch and D. Tataru, Carleman estimates and unique continuation for second order parabolic equations with nonsmooth coefficients. Commun. PDE 34 (2009) 305–366. [CrossRef] [Google Scholar]
  7. K.D. Phung and G. Wang, Quantitative unique continuation for the semilinear heat equation in a convex domain. J. Funct. Anal. 259 (2010) 1230–1247. [Google Scholar]
  8. C. Poon, Unique continuation for parabolic equations. Commun. PDE 21 (1996) 521–539. [CrossRef] [Google Scholar]
  9. G. Wang, M. Wang and Y. Zhang, Observability and unique continuation inequalities for the Schrödinger equation. J. Eur. Math. Soc. 21 (2019) 3513–3572. [CrossRef] [MathSciNet] [Google Scholar]
  10. G. Zheng, D. Xu and T. Wang, A unique continuation property for a class of parabolic differential inequalities in a bounded domain. Commun. Pure Appl. Anal. 20 (2021) 547–558. [CrossRef] [MathSciNet] [Google Scholar]
  11. J. Coron, Control and Nonlinearity. AMS Providence, Rhode Island (2007). [Google Scholar]
  12. X. Fu, J. Yong and X. Zhang, Controllability and observability of a heat equation with hyperbolic memory kernel. J. Diff. Equ. 247 (2009) 2395–2439. [CrossRef] [Google Scholar]
  13. P. Lissy and E. Zuazua, Internal observability for coupled systems of linear partial differential equations. SIAM J. Control. Optim. 57 (2019) 832–853. [CrossRef] [MathSciNet] [Google Scholar]
  14. Q. Lu, Observability estimate and state observation problems for stochastic hyperbolic equations. Inverse Probl. 29 (2013) Article 095011. [Google Scholar]
  15. Q. Lu, Observability estimate for stochastic Schrödinger equations and its applications. SIAM J. Control Optim. 51 (2013) 121–144. [CrossRef] [MathSciNet] [Google Scholar]
  16. K.D. Phung and G. Wang, An observability estimate for parabolic equations from a measurable set in time and its applications. J. Eur. Math. Soc. 15 (2013) 681–703. [CrossRef] [MathSciNet] [Google Scholar]
  17. K.D. Phung, Carleman commutator approach in logarithmic convexity for parabolic equations. Math. Control Relat. F 8 (2018) 899–933. [CrossRef] [Google Scholar]
  18. F.J. Almgren Jr., Dirichlet’s problem for multiple valued functions and the regularity of mass minimizing integral currents, in Minimal Submanifolds and Geodesics. North-Holland, Amsterdam-New York (1979) 1–6. [Google Scholar]
  19. N. Garofalo and F. Lin, Monotonicity properties of variational integrals, Ap weights and unique continuation. Indiana Univ. Math. J. 35 (1986) 245–268. [CrossRef] [MathSciNet] [Google Scholar]
  20. Q. Lü and Z. Yin, Unique continuation for stochastic heat equations. ESAIM Control Optim. Calc. Var. 21 (2015) 378–398. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  21. H. Brezis and T. Cazenave, A nonlinear heat equation with singular initial data. J. Anal. Math. 68 (1996) 277–304. [CrossRef] [MathSciNet] [Google Scholar]
  22. T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations. Clarendon Press, Oxford (1998). [CrossRef] [Google Scholar]
  23. J. Apraiz, L. Escauriaza, G. Wang and C. Zhang, Observability inequalities and measurable sets. J. Eur. Math. Soc. 16 (2014) 2433–2475. [CrossRef] [MathSciNet] [Google Scholar]
  24. G. Wang and G. Zheng, Unique continuation inequalities for the parabolic-elliptic chemotaxis system. J. Diff. Equ. 317 (2022) 524–560. [CrossRef] [Google Scholar]
  25. D. Daners, Heat kernal estimates for operators with boundary conditions. Math. Nachr. 217 (2000) 13–41. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.