Open Access
Issue |
ESAIM: COCV
Volume 30, 2024
|
|
---|---|---|
Article Number | 80 | |
Number of page(s) | 25 | |
DOI | https://doi.org/10.1051/cocv/2024068 | |
Published online | 25 October 2024 |
- L.A. Caffarelli and R.J. McCann, Free boundaries in optimal transport and Monge-Ampere obstacle problems. Ann. Math. 171 (2010) 673–730. [CrossRef] [MathSciNet] [Google Scholar]
- A. Figalli, The optimal partial transport problem. Arch. Ration. Mech. Anal. 195 (2010) 533–560. [CrossRef] [MathSciNet] [Google Scholar]
- E. Indrei, Free boundary regularity in the optimal partial transport problem. J. Funct. Anal. 264 (2013) 2497–2528. [CrossRef] [MathSciNet] [Google Scholar]
- G. Buttazzo, G. Carlier and M. Laborde, On the Wasserstein distance between mutually singular measures. Adv. Calc. Var. 13 (2020) 141–154. [CrossRef] [MathSciNet] [Google Scholar]
- L. Lussardi, M.A. Peletier and M. Roger, Variational analysis of a mesoscale model for bilayer membranes. J. Fixed Point Theory Appl. 15 (2014) 217–240. [CrossRef] [MathSciNet] [Google Scholar]
- M.A. Peletier and M. Roger, Partial localization, lipid bilayers, and the elastica functional. Arch. Ration. Mech. Anal. 193 (2009) 475–537. [CrossRef] [MathSciNet] [Google Scholar]
- Q. Xia and B. Zhou, The existence of minimizers for an isoperimetric problem with Wasserstein penalty term in unbounded domains. Adv. Calc. Var. (2021) 000010151520200083. [Google Scholar]
- M. Novack, I. Topaloglu and R. Venkatraman, Least Wasserstein distance between disjoint shapes with perimeter regularization. J. Funct. Anal. 284 (2023) 26. [Google Scholar]
- J. Candau-Tilh and M. Goldman, Existence and stability results for an isoperimetric problem with a non-local interaction of Wasserstein type. ESAIM Control Optim. Calc. Var. 28 (2022) 20. [Google Scholar]
- G. De Philippis, A.R. Meszaros, F. Santambrogio and B. Velichkov, BV estimates in optimal transportation and applications. Arch. Ration. Mech. Anal. 219 (2016) 829–860. [CrossRef] [MathSciNet] [Google Scholar]
- C. Villani, Topics in optimal transportation. Vol. 58 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2003). [CrossRef] [Google Scholar]
- J. Candau-Tilh, M. Goldman and B. Merlet, An exterior optimal transport problem. arXiv preprint arXiv:2309.02806 (2023). [Google Scholar]
- M. Struwe, Variational methods. Vol. 34 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 4th edn. Springer-Verlag, Berlin (2008). [Google Scholar]
- A. Figalli, F. Maggi and A. Pratelli, A mass transportation approach to quantitative isoperimetric inequalities. Invent. Math. 182 (2010) 167–211. [CrossRef] [MathSciNet] [Google Scholar]
- N. Fusco, F. Maggi and A. Pratelli, The sharp quantitative isoperimetric inequality. Ann. Math. 168 (2008) 941–980. [Google Scholar]
- M. Barchiesi and V. Julin, Robustness of the Gaussian concentration inequality and the Brunn-Minkowski inequality. Calc. Var. Part. Differ. Eq. 56 (2017) 12. [CrossRef] [Google Scholar]
- R.L. Frank and E.H. Lieb, Proof of spherical flocking based on quantitative rearrangement inequalities. Ann. Sc. Norm. Super. Pisa Cl. Sci. 22 (2021) 1241–1263. [MathSciNet] [Google Scholar]
- N. Fusco and A. Pratelli, Sharp stability for the Riesz potential. ESAIM Control Optim. Calc. Var. 26 (2020) 24. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.