Open Access
Issue |
ESAIM: COCV
Volume 30, 2024
|
|
---|---|---|
Article Number | 81 | |
Number of page(s) | 18 | |
DOI | https://doi.org/10.1051/cocv/2024067 | |
Published online | 25 October 2024 |
- E. Le Donne, A metric characterization of Carnot groups. Proc. Am. Math. Soc. 143 (2015) 845–849. [Google Scholar]
- E. Le Donne, A primer on Carnot groups: homogenous groups, Carnot-Caratheodory spaces, and regularity of their isometries. Anal. Geom. Metric Spaces 5 (2018) 116–137. [Google Scholar]
- A. Bravo-Doddoli, No periodic geodesics in jet space. Pac. J. Math. 322 (2023) 11–19. [CrossRef] [Google Scholar]
- N. Hoda, Strongly shortcut spaces, 2023. arXiv:2010.07400 [Google Scholar]
- P. Creutz, Rigidity of the Pu inequality and quadratic isoperimetric constants of normed spaces. Rev. Mat. Iberoamer. 38 (2021) 705–729. [CrossRef] [Google Scholar]
- A. Agrachev, D. Barilari and U. Boscain, A comprehensive introduction to sub-Riemannian geometry. Vol. 181 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2020). From the Hamiltonian viewpoint, With an appendix by Igor Zelenko. [Google Scholar]
- E. Le Donne, A primer on Carnot groups: homogenous groups, Carnot-Caratheodory spaces, and regularity of their isometries. Anal. Geom. Metr. Spaces. 5 (2017) 116–137. [CrossRef] [MathSciNet] [Google Scholar]
- G. Antonelli, E. Le Donne and S. Nicolussi Golo, Lipschitz Carnot-Caratheodory structures and their limits. J. Dyn. Control Syst. (2022) 1–50. [Google Scholar]
- M. Gromov, Carnot-Caratheodory spaces seen from within, in Sub-Riemannian Geometry. Springer (1996) 79–323. [CrossRef] [Google Scholar]
- A. Bellaïche, The tangent space in sub-Riemannian geometry, in Sub-Riemannian Geometry. Springer (1996) 1–78. [Google Scholar]
- D. O’Regan, Existence Theory for Nonlinear Ordinary Differential Equations, Vol. 398. Springer Science & Business Media (1997). [CrossRef] [Google Scholar]
- E.A. Coddington and N. Levinson, Theory of Ordinary Differential Equations. Tata McGraw-Hill Education (1955). [Google Scholar]
- A.A. Agrachev and Y. Sachkov, Control Theory from the Geometric Viewpoint, Vol. 87. Springer Science & Business Media (2013). [Google Scholar]
- E. Hakavuori, Infinite geodesics and isometric embeddings in Carnot groups of step 2. SIAM J. Control Optim. 58 (2020) 447–461. [CrossRef] [MathSciNet] [Google Scholar]
- R. Montgomery, A tour of subriemannian geometries, their geodesics and applications. Vol. 91 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2002). [Google Scholar]
- R.L. Bryant and L. Hsu, Rigidity of integral curves of rank 2 distributions. Invent. Math. 114 (1993) 435–461. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.