Open Access
Issue |
ESAIM: COCV
Volume 30, 2024
|
|
---|---|---|
Article Number | 65 | |
Number of page(s) | 60 | |
DOI | https://doi.org/10.1051/cocv/2024056 | |
Published online | 12 September 2024 |
- S. Dolecki and D.L. Russell, A general theory of observation and control. SIAM J. Control Optim. 15 (1977) 185–220. [CrossRef] [MathSciNet] [Google Scholar]
- J.-L. Lions, Contrôlabilité exacte des systèmes distribués. C. R. Acad. Sci. Paris Sér I Math. 302 (1986) 471–475. [MathSciNet] [Google Scholar]
- J.-L. Lions, Exact controllability, stabilizability, and perturbations for distributed systems. SIAM Rev. 30 (1988) 1–68. [CrossRef] [MathSciNet] [Google Scholar]
- S. Micu and E. Zuazua, An introduction to the Controllability of Linear PDE, Quelques questions de théorie du contrôle, edited by T. Sari. Collection Travaux en Cours, Hermann (2005) 69–157. [Google Scholar]
- A. Shao, On Carleman and Observability estimates for wave equations on time dependent domains. Proc. Lond. Math. Soc. 119 (2019) 998–1064. [CrossRef] [MathSciNet] [Google Scholar]
- C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. SIAM J. Control Optim. 30 (1992) 1024–1065. [Google Scholar]
- C. Laurent and M. Léautaud, Uniform observability estimates for linear waves. ESAIM Contr. Optim. Calc. Var. 22 (2016) 1097–1136. [CrossRef] [EDP Sciences] [Google Scholar]
- J. Le Rousseau, G. Lebeau, P. Terpolilli and E. Trélat, Geometric control condition for the wave equation with a time-dependent observation domain. Anal. PDE 10 (2017) 983–1015. [Google Scholar]
- D. Tataru, Unique continuation for solutions to PDEs; between Hörmander’s theorems and Holmgren’s theorem. Commun. Partial Differ. Equ. 20 (1995) 855–884. [CrossRef] [Google Scholar]
- L. Baudouin, M. de Buhan and S. Ervedoza, Global Carleman estimates for waves and applications. Commun. Partial Differ. Equ. 38 (2013) 823–859. [CrossRef] [Google Scholar]
- I. Lasiecka, R. Triggiani and X. Zhang, Nonconservative wave equations with unobserved Neumann BC: global uniqueness and observability in one shot. Contemp. Math. 268 (2000) 227–326. [CrossRef] [Google Scholar]
- D. Tataru, A-priori estimates of Carleman’s type in domains with boundaries. J. Math. Pures Appl. 73 (1994) 355–387. [MathSciNet] [Google Scholar]
- A.P. Calderón, Uniqueness in the Cauchy problem for partial differential equations. Amer. J. Math. 80 (1958) 16–36. [CrossRef] [MathSciNet] [Google Scholar]
- T. Carleman, Sur un problème d’unicité pour les systèmes déquations aux dérivées partielles à deux variables indépendentes. Ark. Mat. Astr. Fys. 26 (1939) 1–9. [Google Scholar]
- L. Hörmander, The analysis of Linear Partial Differential Operators IV: Fourier Integral Operators. Springer-Verlag (1985). [Google Scholar]
- O.Y. Imanuvilov, On Carleman estimates for hyperbolic equations. Asymptotic Anal. 32 (2002) 185–220. [MathSciNet] [Google Scholar]
- L.F. Ho, Observabilité frontière de l’équation des ondes. C. R. Acad. Sci. Paris Sér. I Math. 302 (1986) 443–446 [Google Scholar]
- V. Komornik, Contrôlabilité exacte en un temps minimal. C. R. Acad. Sci. Paris Sér. I Math. 304 (1987) 223–225. [MathSciNet] [Google Scholar]
- T. Duyckaerts, X. Zhang and E. Zuazua, On the optimality of the observability inequalities for parabolic and hyperbolic systems with potentials. Ann. I. H. Poincaré 25 (2008) 1–41. [CrossRef] [Google Scholar]
- X. Fu, J. Yong and X. Zhang, Exact controllability for multidimensional semilinear hyperbolic equations. SIAM J. Control Optim. 46 (2007) 1578–1614. [CrossRef] [MathSciNet] [Google Scholar]
- R. Triggiani and P.F. Yao, Carleman estimates with no lower-order terms for general Riemann wave equations. Global uniqueness and observability in one shot. Appl. Math. Optim. 46 (2002) 331–375. [CrossRef] [MathSciNet] [Google Scholar]
- P. Yao, On The Observability Inequalities for Exact Controllability of Wave Equations With Variable Coefficients. SIAM J. Control Optim. 37 (1999) 1568–1599. [CrossRef] [MathSciNet] [Google Scholar]
- S. Alexakis, A. Feizmohammadi and L. Oksanen, Lorentzian Calderón problem under curvature bounds. Invent. Math. 229 (2022) 87–138. [CrossRef] [MathSciNet] [Google Scholar]
- H. Takase, Inverse source problem for a system of wave equations on a Lorentzian manifold. Commun. Partial Differ. Equ. 45 (2020) 1414–1434. [CrossRef] [Google Scholar]
- S. Alexakis, A. Feizmohammadi and L. Oksanen, Lorentzian Calderón problem near the Minkowski geometry, arXiv:2112.01663 (2021). [Google Scholar]
- J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications. Grundlehren Math. Wiss. (1972). [Google Scholar]
- B.-L. Chen and P.G. LeFloch, Injectivity radius of Lorentzian manifolds. Commun. Math. Phys. 278 (2008) 679–713. [CrossRef] [Google Scholar]
- S. Alexakis and A. Shao, Global uniqueness theorems for linear and nonlinear waves. J. Funct. Anal. 269 (2015) 3458–3499. [CrossRef] [MathSciNet] [Google Scholar]
- V.K. Jena, Carleman estimate for ultrahyperbolic operators and improved interior control for wave equations. J. Differ. Equ. 302 (2021) 273–333. [CrossRef] [Google Scholar]
- V.K. Jena, Interior control of waves on time dependent domains. J. Math. Anal. Appl. 516 (2022) 126468. [CrossRef] [Google Scholar]
- N. Lerner and L. Robbiano, Unicité de Cauchy pour des opérateurs de type principal par. J. Anal. Math. 44 (1984) 32–66. [CrossRef] [Google Scholar]
- B. O’Neill, Semi-Riemannian Geometry With Applications to Relativity. Vol. 103 (Pure and Applied Mathematics). Academic Press (1983). [Google Scholar]
- A. McGill and A. Shao, Null geodesics and improved unique continuation for waves in asymptotically Anti-de Sitter spacetimes. Class. Quant. Grav. 38 (2020) 054001. [CrossRef] [Google Scholar]
- D. Tataru, Carleman estimates, unique continuation and applications. http://math.berkeley.edu/{$\sim$}tataru/papers/ucpnotes.ps. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.