Open Access
Issue |
ESAIM: COCV
Volume 30, 2024
|
|
---|---|---|
Article Number | 66 | |
Number of page(s) | 22 | |
DOI | https://doi.org/10.1051/cocv/2023075 | |
Published online | 23 September 2024 |
- I. Babuška, F. Nobile and R. Tempone, A stochastic collocation method for elliptic partial differential equations with random input data. SIAM Rev. 52 (2010) 317–355. [CrossRef] [MathSciNet] [Google Scholar]
- M.P. Bendsøe and O. Sigmund, Material interpolation schemes in topology Optimization. Arch. Appl. Mech. 69 (1999) 635–654. [CrossRef] [Google Scholar]
- M.P. Bendsøe and O. Sigmund, Topology Optimization. Springer-Verlag, Berlin (2003). [Google Scholar]
- S. Boucheron, G. Lugosi and P. Massart, Concentration Inequalities: A Nonasymptotic Theory of Independence. Oxford University Press (2013). [CrossRef] [Google Scholar]
- P. Chen, A. Quarteroni and G. Rozza, Stochastic optimal robin boundary control problems of advection-dominated elliptic equations. SIAM J. Numer. Anal. 51 (2013) 2700–2722. [CrossRef] [MathSciNet] [Google Scholar]
- M. Dambrine, C. Dapogny and H. Harbrecht, Shape optimization for quadratic functionals and states with random right-hand sides. SIAM J. Control Optim. 53 (2015) 81–103. [Google Scholar]
- A. Gaivoronoski, Linearization methods for optimization of functionals which depend on probability measures, in Mathematical Programming Study28, Vol. 84 of Stochastic Programming. Part II, edited by A. Prékopa, R. J. Wets. The Mathematical Programming Society (1986) 157-181. [CrossRef] [Google Scholar]
- V. Keshavarzzadeh, M. Meidani and A. Tortorelli, A gradient based design optimization under uncertainty via stochastic expansion methods. Comput. Methods Appl. Mech. Eng. 306 (2016) 47–76. [CrossRef] [Google Scholar]
- D.P. Kouri and T.M. Surowiec, A primal-dual algorithm for risk minimization. Math. Program. Ser. A 1 (2022) 337–363. [CrossRef] [Google Scholar]
- M. Lazar and E. Zuazua, Averaged control and observation of parameter-depending wave equations. C. R. Mathematiques 352 (2014) 497–502. [CrossRef] [Google Scholar]
- M. Lazar and E. Zuazua, Greedy controllability of finite dimensional linear Systems. Automatica 74 (2016) 327–340. [CrossRef] [Google Scholar]
- J. Lohéac and E. Zuazua, Averaged controllability for random evolution partial differential equations. J. Diff. Equ. 262 (2017) 1540–1574. [CrossRef] [Google Scholar]
- L.J. Lucas, H. Owhadi and M. Ortiz, Rigorous verification, validation, uncertainty quantification and certification through concentration-of-measure inequalities. Comput. Methods Appl. Mech. Eng. 197 (2008) 4591–3609. [CrossRef] [Google Scholar]
- A. Mafusalov and S. Uryasev, Buffered probability of exceedance: mathematical properties and optimization. SIAM J. Optim. 28 (2018) 1077–1103. [CrossRef] [MathSciNet] [Google Scholar]
- J. Martínez-Frutos and F. Periago, Optimal Control of PDEs under Uncertainty. An introduction with application to optimal shape design., Springer Briefs in Mathematics. BCAM SpringerBriefs (2018). [CrossRef] [Google Scholar]
- J. Martínez-Frutos, M. Kessler and F. Periago, Robust optimal shape design for an elliptic pde under uncertainty in its input data. ESAIM: COCV 21 (2015) 901–923. [CrossRef] [EDP Sciences] [Google Scholar]
- J. Martínez-Frutos, M. Kessler, A. Münch and F. Periago, Robust optimal Robin boundary control for the transient heat equation with random input Data. Inter. J. Numer. Methods Eng. 108 (2017) 116–135. [Google Scholar]
- F. Marín, J. Martinez-Frutos and F. Periago, Robust averaged control of vibrations for the Bernoulli-Euler beam equation. J. Optim. Theory Appl. 174 (2017) 428–454. [CrossRef] [MathSciNet] [Google Scholar]
- F. Marín, J. Martínez-Frutos and F. Periago, A polynomial chaos approach to risk-averse piezo-electric control of random vibrations of beams. Int. J. Numer. Methods Eng. (2018) 1–18. [Google Scholar]
- J. Martínez-Frutos, D. Herrero-Pŕez, M. Kessler and F. Periago, Risk-averse structural topology optimization under random fields using stochastic expansion methods. Comput. Methods Appl. Mech. Eng. 330 (2018) 180–206. [CrossRef] [Google Scholar]
- C. McDiarmid, On the method of bounded differences, in Surveys in Combinatorics (Norwich, 1989), London Math. Soc. Lecture Note Ser. 141. Cambridge University Press (1989) 148–188. [Google Scholar]
- C. McDiarmid, Centering sequences with bounded differences. Combin. Probab. Comput. 6 (1997) 79–86. [CrossRef] [MathSciNet] [Google Scholar]
- A. Prékopa, Stochastic Programming, Vol. 324 of Mathematics and its Applications. Springer-Science+Business Media B.V. (1995). [Google Scholar]
- R.T. Rockafellar, Convex Analysis. Cambridge University Press (1970). [CrossRef] [Google Scholar]
- E. Rosseel and G.N. Wells, Optimal control with stochastics PDE constraints and uncertain controls. Comput. Methods Appl. Mech. Eng. 213 (2012) 152–167. [CrossRef] [Google Scholar]
- T. Szántai, Evaluation of a special multivariate gamma distribution function, in Mathematical Programming Study, Vol. 84 of Stochastic Programming. Part I, edited by A. Prekopa and R.J. Wets. The Mathematical Programming Society (1986) 1–17. [Google Scholar]
- F. Tröltzsch, Optimal Control of Partial Differential Equations, Graduate Studies in Mathematics. Vol. 112. American Mathematical Society (2010). [Google Scholar]
- L. Warnke, On the method of typical bounded differences. Combin. Probab. Comput. 25 (2016) 269–299. [CrossRef] [MathSciNet] [Google Scholar]
- E. Zuazua, Averaged control. Automatica 50 (2014) 3077–3087. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.