Open Access
Issue
ESAIM: COCV
Volume 30, 2024
Article Number 36
Number of page(s) 35
DOI https://doi.org/10.1051/cocv/2024026
Published online 23 April 2024
  1. F. Bullo and A.D. Lewis, Geometric Control of Mechanical Systems: Modeling, Analysis, and Design for Simple Mechanical Control Systems. Springer (2004). [Google Scholar]
  2. B.A. Francis and M. Maggiore, Geometric Control of Mechanical Systems: Modeling, Analysis, and Design for Simple Mechanical Control Systems. Springer (2004). [Google Scholar]
  3. Z. Lin, B. Francis and M. Maggiore, Getting mobile autonomous robots to rendezvous, in Control of Uncertain Systems: Modelling, Approximation, and Design, edited by B.A. Francis, M.C. Smith and J.C. Willems. Springer Berlin Heidelberg, Berlin, Heidelberg (2006) 119–137. [CrossRef] [Google Scholar]
  4. S.L. Smith, M.E. Broucke and B.A. Francis, Curve shortening and the rendezvous problem for mobile autonomous robots. IEEE Trans. Automatic Control 52 (2007) 1154–1159. [CrossRef] [MathSciNet] [Google Scholar]
  5. P. Crouch and F.S. Leite, Geometry and the dynamic interpolation problem, in 1991 American Control Conference (1991) 1131–1136. https://doi.org/10.23919/ACC.1991.4791552. [CrossRef] [Google Scholar]
  6. L. Noakes, G. Heinzinger and B. Paden, Cubic splines on curved spaces. IMA J. Math. Control Inform. 6 (1989) 465–473. [CrossRef] [MathSciNet] [Google Scholar]
  7. F.C. Park and B. Ravani, Bézier curves on Riemannian manifolds and Lie groups with kinematics applications. J. Mech. Des. 117 (1995) 36–40. [CrossRef] [Google Scholar]
  8. P. Balseiro, T.J. Stuchi, A. Cabrera and J. Koiller, About simple variational splines from the Hamiltonian viewpoint. J. Geom. Mech. 9 (2017) 257–290, [CrossRef] [MathSciNet] [Google Scholar]
  9. L. Zhang and C. Zhou, Kuka youbot arm shortest path planning based on geodesics, in 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE (2013) 2317–2321. [CrossRef] [Google Scholar]
  10. T. Flash and N. Hogan, The coordination of arm movements: an experimentally confirmed mathematical model. J. Neurosci. 5 (1985) 1688–1703. [CrossRef] [PubMed] [Google Scholar]
  11. A. Biess, D.G. Liebermann and T. Flash, A computational model for redundant human three-dimensional pointing movements: integration of independent spatial and temporal motor plans simplifies movement dynamics. J. Neurosci. 27 (2007) 13045–13064. [CrossRef] [PubMed] [Google Scholar]
  12. A. Biess, T. Flash and D.G. Liebermann, Riemannian geometric approach to human arm dynamics, movement optimization, and invariance. Phys. Rev. E 83 (2011) 031927. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  13. H. Whitney, Geometric Integration Theory. Princeton University Press (1957) http://www.jstor.org/stable/j.ctt183q1bm (accessed 2023-09-21) [Google Scholar]
  14. G. Rodnay and E. Rimon, Isometric visualization of configuration spaces of two-degrees-of-freedom mechanisms. Mech. Mach. Theory 36 (2001) 523–545. [CrossRef] [Google Scholar]
  15. D.C. Lin, C.P. McGowan, K.P. Blum and L.H. Ting, Yank: the time derivative of force is an important biomechanical variable in sensorimotor systems. J. Exp. Biol. 222 (2019) jeb180414. [CrossRef] [PubMed] [Google Scholar]
  16. K.M. Lynch and F.C. Park, Modern Robotics: Mechanics, Planning, and Control, 1st edn. Cambridge University Press, USA (2017). [CrossRef] [Google Scholar]
  17. A. Abate, J.W. Hurst and R.L. Hatton, Mechanical antagonism in legged robots, in Proceedings of the Robotics: Science and Systems Conference. Ann Arbor, Michigan (2016) 1–8. [Google Scholar]
  18. N. Titus and C. Spenny, Power metrics for robot planning and redundancy resolution, in Proceedings of 1994 9th IEEE International Symposium on Intelligent Control (1994) 153–159. [CrossRef] [Google Scholar]
  19. F. Gay-Balmaz, D.D. Holm, D.M. Meier, T.S. Ratiu and F.-X. Vialard, Invariant higher-order variational problems. Commun. Math. Phys. 309 (2012) 413–458. [Google Scholar]
  20. F. Gay-Balmaz, D.D. Holm, D.M. Meier, T.S. Ratiu and F.-X. Vialard, Invariant higher-order variational problems II. J. Nonlinear Sci. 22 (2012) 553–597. [Google Scholar]
  21. B. Heeren, M. Rumpf and B. Wirth, Variational time discretization of Riemannian splines. IMA J. Numer. Anal. 39 (2019) 61–104. [MathSciNet] [Google Scholar]
  22. C.L. Burnett, D.D. Holm and D.M. Meier, Inexact trajectory planning and inverse problems in the Hamilton–-Pontryagin framework. Proc. Roy. Soc. A: Math. Phys. Eng. Sci. 469 (2013) 20130249. [Google Scholar]
  23. R.N. Jazar, Fundamentals of Dynamics, Ch. 2. John Wiley & Sons, Ltd (2011) 114–239. [Google Scholar]
  24. R.L. Hatton, Z. Brock, S. Chen, H. Choset, H. Faraji, R. Fu, N. Justus and S. Ramasamy, The geometry of optimal gaits for inertia-dominated kinematic systems. IEEE Trans. Robot. 38 (2022) 3279–3299. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.