Open Access
Issue |
ESAIM: COCV
Volume 30, 2024
|
|
---|---|---|
Article Number | 88 | |
Number of page(s) | 35 | |
DOI | https://doi.org/10.1051/cocv/2024077 | |
Published online | 19 November 2024 |
- B. Andreianov, K.H. Karlsen and N.H. Risebro, A theory of L1-dissipative solvers for scalar conservation laws with discontinuous flux. Arch. Ration. Mech. Anal. 201 (2011) 27–86. [Google Scholar]
- A. Bayen, M.L. Delle Monache, M. Garavello, P. Goatin and B. Piccoli, Control Problems for Conservation Laws with Traffic Applications: Modeling, Analysis, and Numerical Methods. Springer Nature (2022). [CrossRef] [Google Scholar]
- A. Bressan, S. Čanić, M. Garavello, M. Herty and B. Piccoli, Flows on networks: recent results and perspectives. EMS Surv. Math. Sci. 1 (2014) 47–111. [CrossRef] [MathSciNet] [Google Scholar]
- B. Piccoli, Control of multi-agent systems: results, open problems, and applications. Open Math. 21 (2023) 20220585. [CrossRef] [Google Scholar]
- A. Bressan and K. Han, Optima and equilibria for a model of traffic flow. SIAM J. Math. Anal. 43 (2011) 2384–2417. [CrossRef] [MathSciNet] [Google Scholar]
- A. Bressan and K. Han, Nash equilibria for a model of traffic flow with several groups of drivers. ESAIM: Control Optim. Calc. Var. 18 (2012) 969–986. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- A. Bressan and K. Han, Existence of optima and equilibria for traffic flow on networks. Networks Heterog. Media 8 (2013) 627–648. [CrossRef] [MathSciNet] [Google Scholar]
- A. Bressan and K.T. Nguyen, Optima and equilibria for traffic flow on networks with backward propagating queues. Networks Heterog. Media 10 (2015) 717–748. [CrossRef] [MathSciNet] [Google Scholar]
- A. Cascone, C. D’Apice, B. Piccoli and L. Rarità, Optimization of traffic on road networks. Math. Models Methods Appl. Sci. 17 (2007) 1587–1617. [CrossRef] [MathSciNet] [Google Scholar]
- R.M. Colombo, P. Goatin and M.D. Rosini, On the modelling and management of traffic. ESAIM: Math. Model. Numer. Anal. 45 (2011) 853–872. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- M. Gugat, M. Herty, A. Klar and G. Leugering, Optimal control for traffic flow networks. J. Optim. Theory Appl. 126 (2005) 589–616. [CrossRef] [MathSciNet] [Google Scholar]
- M. Herty and A. Klar, Modeling, simulation, and optimization of traffic flow networks. SIAM J. Sci. Comput. 25 (2003) 1066–1087. [CrossRef] [MathSciNet] [Google Scholar]
- L. Tumash, C. Canudas-de-Wit and M.L. Delle Monache, Boundary control design for traffic with nonlinear dynamics. IEEE Trans. Automatic Control 67 (2021) 1301–1313. [Google Scholar]
- R.M. Colombo and A. Groli, Minimising stop and go waves to optimise traffic flow. Appl. Math. Lett. 17 (2004) 697–701. [CrossRef] [MathSciNet] [Google Scholar]
- F. Ancona, A. Cesaroni, G.M. Coclite and M. Garavello, On the optimization of conservation law models at a junction with inflow and flow distribution controls. SIAM J. Control Optim. 56 (2018) 3370–3403. [Google Scholar]
- C. Imbert, R. Monneau and H. Zidani, A Hamilton–Jacobi approach to junction problems and application to traffic flows. ESAIM Control Optim. Calc. Var. 19 (2013) 129–166. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- P. Cardaliaguet, N. Forcadel and R. Monneau, A class of germs arising from homogenization in traffic flow on junctions. J. Hyperbolic Differ. Equ. 21 (2024) 189–254. [CrossRef] [MathSciNet] [Google Scholar]
- C. Imbert and R. Monneau, Flux-limited solutions for quasi-convex Hamilton–Jacobi equations on networks. Ann. Sci. Éc. Norm. Supér. 50 (2017) 357–448. [CrossRef] [MathSciNet] [Google Scholar]
- Y. Achdou, S. Oudet and N. Tchou, Hamilton–Jacobi equations for optimal control on junctions and networks. ESAIM: Control Optim. Calc. Var. 21 (2015) 876–899. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- G. Barles and E. Chasseigne, An illustrated guide of the modern approaches of Hamilton–Jacobi equations and control problems with discontinuities, Birkhaüser (2024). [CrossRef] [Google Scholar]
- P.-L. Lions and P. Souganidis, Viscosity solutions for junctions: well posedness and stability. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 27 (2016) 535–545. [MathSciNet] [Google Scholar]
- P.-L. Lions and P. Souganidis, Well-posedness for multi-dimensional junction problems with Kirchoff-type conditions. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 28 (2017) 807–816. [MathSciNet] [Google Scholar]
- P. Cardaliaguet, N. Forcadel, T. Girard and R. Monneau, Conservation law and Hamilton-Jacobi equations on a junction: the convex case. Discrete Contin. Dyn. Syst.-A 44 (2024) 3920–3961. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.