Open Access
Issue
ESAIM: COCV
Volume 30, 2024
Article Number 89
Number of page(s) 20
DOI https://doi.org/10.1051/cocv/2024078
Published online 21 November 2024
  1. L.S. Pontryagin, V.G. Boltyanski, R.V. Gamkrelidze and E.F. Mischenko, Mathematical Theory of Optimal Processes. Wiley, New York (1962). [Google Scholar]
  2. E.N. Barron and R. Jensen, The pontryagin maximum principle from dynamic programming and viscosity solutions to first-order partial differential equations. Trans. Am. Math. Soc. 298 (1986) 635–641. [CrossRef] [Google Scholar]
  3. J.-M. Bismut, An introductory approach to duality in optimal stochastic control. SIAM Rev. 20 (1978) 62–78. [CrossRef] [MathSciNet] [Google Scholar]
  4. A. Bensoussan, Lectures on stochastic control, in Nonlinear Filtering and Stochastic Control, Vol. 972. Springer (1982) 1–62. [CrossRef] [Google Scholar]
  5. X. Zhou, The connection between the maximum principle and dynamic programming in stochastic control. Stochastics 31 (1990) 1–13. [Google Scholar]
  6. X. Zhou, A unified treatment of maximum principle and dynamic programming in stochastic controls. Stochastics 36 (1991) 137–161. [Google Scholar]
  7. L. Chen and Q. Lu, Relationships between the maximum principle and dynamic programming for infinite dimensional stochastic control systems. J. Differ. Equ. 358 (2023) 103–146. [CrossRef] [Google Scholar]
  8. J. Yong and X.Y. Zhou, Stochastic Controls: Hamiltonian Systems and HJB Equations, Vol. 43. Springer Science & Business Media (1999). [Google Scholar]
  9. K. Du and Q. Zhang, Semi-linear degenerate backward stochastic partial differential equations and associated forward-backward stochastic differential equations. Stochast. Processes Applic. 123 (2013) 1616–1637. [CrossRef] [MathSciNet] [Google Scholar]
  10. Y. Hu, J. Ma and J. Yong, On semi-linear degenerate backward stochastic partial differential equations. Probab. Theory Related Fields 123 (2002) 381–411. [CrossRef] [MathSciNet] [Google Scholar]
  11. J. Ma and J. Yong, Adapted solution of a degenerate backward spde with applications. Stochast. Processes Applic. 70 (1997) 59–84. [CrossRef] [Google Scholar]
  12. S. Tang, Semi-linear systems of backward stochastic partial differential equations in ℝn. Chinese Ann. Math. 26 (2005) 437–456. [CrossRef] [Google Scholar]
  13. S. Peng, A generalized dynamic programming principle and Hamilton–Jacobi–Bellman equation. Stochast. Stochast. Rep. 38 (1992) 119–134. [CrossRef] [Google Scholar]
  14. D. Duffie and L. Epstein, Stochastic differential utility. Econometrica 60 (1992) 353–394. [CrossRef] [MathSciNet] [Google Scholar]
  15. S. Peng, Backward stochastic differential equations and applications to optimal control. Appl. Math. Optim. 27 (1993) 125–144. [CrossRef] [MathSciNet] [Google Scholar]
  16. Z. Wu, A general maximum principle for optimal control of forward–backward stochastic systems. Automatica 49 (2013) 1473–1480. [CrossRef] [MathSciNet] [Google Scholar]
  17. J. Yong, Optimality variational principle for controlled Forward–backward stochastic differential equations with mixed initial-terminal conditions. SIAM J. Control Optim. 48 (2010) 4119–4156. [CrossRef] [MathSciNet] [Google Scholar]
  18. M. Hu, Stochastic global maximum principle for optimization with recursive utilities. Probab. Uncertain. Quant. Risk 2 (2017) 1–20. [CrossRef] [MathSciNet] [Google Scholar]
  19. S. Peng, Open problems on backward stochastic differential equations, in Control of Distributed Parameter and Stocastic Systems, edited by S. Chen, X. Li, J. Yong and X. Zhou. Kluwer Academic Publisher, Boston (1998) 265–273. [Google Scholar]
  20. J. Shi, The relationship between maximum principle and dynamic programming principle for stochastic recursive optimal control problems and applications to finance, in Proceedings of the 29th Chinese Control Conference, Beijing, China (2010) 1535–1540. [Google Scholar]
  21. J.-T. Shi and Z. Yu, Relationship between maximum principle and dynamic programming for stochastic recursive optimal control problems and applications. Math. Probl. Eng. (2013) Art. ID 285241. [Google Scholar]
  22. T. Nie, J. Shi and Z. Wu, Connection between MP and DPP for stochastic recursive optimal control problems: Viscosity solution framework in local case, in Proceedings of the 2016 American Control Conference, Boston (2016) 7225–7230. [CrossRef] [Google Scholar]
  23. T. Nie, J. Shi and Z. Wu, Connection between MP and DPP for stochastic recursive optimal control problems: viscosity solution framework in the general case. SIAM J. Control Optim. 55 (2017) 3258–3294. [CrossRef] [MathSciNet] [Google Scholar]
  24. S. Tang, General linear quadratic optimal stochastic control problems with random coefficients: linear stochastic Hamilton systems and backward stochastic Riccati equations. SIAM J. Control Optim. 42 (2003) 53–75. [CrossRef] [MathSciNet] [Google Scholar]
  25. S. Tang, Dynamic programming for general linear quadratic optimal stochastic control with random coefficients. SIAM J. Control Optim. 53 (2015) 1082–1106. [CrossRef] [MathSciNet] [Google Scholar]
  26. J. Qiu, Weak solution for a class of fully nonlinear stochastic Hamilton–Jacobi–Bellman equations. Stochast. Processes Applic. 127 (2017) 1926–1959. [CrossRef] [Google Scholar]
  27. J. Qiu, Viscosity solutions of stochastic Hamilton–Jacobi–Bellman equations. SIAM J. Control Optim. 56 (2018) 3708–3730. [CrossRef] [MathSciNet] [Google Scholar]
  28. F. Zhang, Y. Dong and Q. Meng, Backward stochastic Riccati equation with jumps associated with stochastic linear quadratic optimal control with jumps and random coefficients. SIAM J. Control Optim. 58 (2020) 393–424. [CrossRef] [MathSciNet] [Google Scholar]
  29. P. Briand, B. Delyon, Y. Hu, E. Pardoux and L. Stoica, Lp solutions of backward stochastic differential equations. Stochast. Processes Applic. 108 (2003) 109–129. [CrossRef] [Google Scholar]
  30. S. Peng, Backward stochastic difffferential equations-stochastic optimization theory and viscosity solutions of HJB equations, in Topics on Stochastic Analysis (in Chinese), edited by J. Yan, S. Peng, S. Fang and L. W. Science Press, Beijing (1997) 85–138 (ch. 2). [Google Scholar]
  31. Q. Meng, Y. Dong, Y. Shen and S. Tang, Optimal controls of stochastic differential equations with jumps and random coefficients: stochastic Hamilton–Jacobi–Bellman equations with jumps. Appl. Math. Optim. 87 (2023) ID 3. [CrossRef] [Google Scholar]
  32. L. Mou and J. Yong, A variational formula for stochastic controls and some applications. Pure Appl. Math. Q. 3 (2007) 539–567. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.