Open Access
Issue |
ESAIM: COCV
Volume 30, 2024
|
|
---|---|---|
Article Number | 84 | |
Number of page(s) | 38 | |
DOI | https://doi.org/10.1051/cocv/2024073 | |
Published online | 08 November 2024 |
- D.J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular channel, and a new type of long stationary wave. Phil. Mag. 39 (1895) 422–443. [CrossRef] [Google Scholar]
- C. Gardner and G.K. Morikawa, The effect of temperature on the width of a small-amplitude, solitary wave in a collision-free plasma. Commun. Pure Appl. Math. 18 (1965) 35–49. [CrossRef] [Google Scholar]
- H. Kever and G.K. Morikawa, Korteweg–de Vries equation for nonlinear hydromagnetic waves in a warm collision- free plasma. Phys. Fluids 12 (1969) 2090–2093. [CrossRef] [Google Scholar]
- J. Lidsey, Cosmology and the Korteweg–de Vries equation. Phys. Rev. D 86 (2012) 123523. [CrossRef] [Google Scholar]
- J. Bona and R. Winther, The Korteweg–de Vries equation, posed in a quarter-plane. SIAM J. Math. Anal. 14 (1983) 1056–1106. [CrossRef] [MathSciNet] [Google Scholar]
- E. Cerpa, Control of a Korteweg–de Vries equation: a tutorial. Math. Control Related Fields 4 (2014) 45. [CrossRef] [MathSciNet] [Google Scholar]
- L. Rosier and B.-Y. Zhang, Control and stabilization of the Korteweg–de Vries equation: recent progresses. J. Syst. Sci. Complex. 22 (2009) 647–682. [CrossRef] [MathSciNet] [Google Scholar]
- K. Ammari and E. Crépeau, Feedback stabilization and boundary controllability of the Korteweg–de Vries equation on a star-shaped network. SIAM J. Control Optim. 56 (2018) 1620–1639. [CrossRef] [MathSciNet] [Google Scholar]
- E. Cerpa, E. Crépeau and C. Moreno, On the boundary controllability of the Korteweg–de Vries equation on a star-shaped network. IMA J. Math. Control Inform. 37 (2020) 226–240. [MathSciNet] [Google Scholar]
- H. Parada, Null controllability of KdV equation in a star-shaped network. Evol. Equ. Control Theory 13 (2024) 719–750. [CrossRef] [MathSciNet] [Google Scholar]
- H. Parada, E. Crépeau and C. Prieur, Delayed stabilization of the Korteweg–de Vries equation on a star-shaped network. Math. Control Signals Syst. 34 (2022) 559–605. [CrossRef] [Google Scholar]
- H. Parada, E. Crépeau and C. Prieur, Global well-posedness of the KdV equation on a star-shaped network and stabilization by saturated controllers. SIAM J. Control Optim. 60 (2022) 2268–2296. [CrossRef] [MathSciNet] [Google Scholar]
- M. Cavalcante, The Korteweg–de Vries equation on a metric star graph. Z. Angew. Math. Phys. 69 (2018) 124. [CrossRef] [Google Scholar]
- R. Assel and M. Ghazel, Energy decay for the damped wave equation on an unbounded network. Evol. Equ. Control Theory 7 (2018) 335. [CrossRef] [MathSciNet] [Google Scholar]
- R. Assel, M. Jellouli and M. Khenissi, Optimal decay rate for the local energy of a unbounded network. J. Differ. Equ. 261 (2016) 4030–4054. [CrossRef] [Google Scholar]
- J. Holmer, The initial-boundary value problem for the Korteweg–de Vries equation. Commun. Part. Differ. Equ. 31 (2006) 1151–1190. [CrossRef] [Google Scholar]
- L. Rosier, Exact boundary controllability for the linear Korteweg–de Vries equation on the half-line. SIAM J. Control Optim. 39 (2000) 331–351. [CrossRef] [MathSciNet] [Google Scholar]
- F. Linares and A. Pazoto, Asymptotic behavior of the Korteweg–de Vries equation posed in a quarter plane. J. Differ. Equ. 246 (2009) 1342–1353. [CrossRef] [Google Scholar]
- M. Cavalcanti, V. Domingos Cavalcanti, V. Komornik and J. Rodrigues, Global well-posedness and exponential decay rates for a KdV–Burgers equation with indefinite damping. Ann. Inst. Henri Poincare (C) Non Linear Anal. 31 (2014) 1079–1100. [CrossRef] [Google Scholar]
- A. Pazoto and L. Rosier, Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete Continuous Dyn. Syst. B 14 (2010) 1511–1535. [CrossRef] [MathSciNet] [Google Scholar]
- A. Pazoto and G. dos Reis Souza, Well-posedness and stabilization of a model system for long waves posed on a quarter plane. Adv. Differ. Equ. 18 (2013) 1165–1188. [Google Scholar]
- H. Parada, E. Crépeau and C. Prieur, Asymptotic behavior of KdV equation in a star-shaped network with bounded and unbounded lengths, in 2023 62nd IEEE Conference on Decision and Control (CDC) (2023) 6199–6204. [CrossRef] [Google Scholar]
- H. Parada, Control and stabilization of PDE on networks. PhD thesis, Universite Grenoble Alpes (2023). https://theses.hal.science/tel-04235934. [Google Scholar]
- A. Pazy, Semigroups of linear operators and applications to partial differential equations. Appl. Math. Sci. (1983). [CrossRef] [Google Scholar]
- A. Faminskii, An initial boundary-value problem in a half-strip for the Korteweg-de Vries equation in fractional- order Sobolev spaces. Commun. Part. Differ. Equ. 29 (2005) 1653–1695. [CrossRef] [Google Scholar]
- L. Rosier, Exact boundary controllability for the Korteweg–de Vries equation on a bounded domain. ESAIM Control Optim. Calc. Var. 2 (1997) 33–55. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- T. Colin and M. Gisclon, An initial-boundary-value problem that approximate the quarter-plane problem for the Korteweg–de Vries equation. Nonlinear Anal. Theory Methods Appl. 46 (2001) 869–892. [CrossRef] [Google Scholar]
- G. Perla Menzala, C. Vasconcellos and E. Zuazua, Stabilization of the Korteweg–de Vries equation with localized damping. Q. Appl. Math. 60 (2002) 111–129. [CrossRef] [Google Scholar]
- J. Simon, Compact sets in the space Lp(0, T; B). Ann. Mat. Pura Appl. 146 (1986) 65–96. [CrossRef] [Google Scholar]
- L. Rosier and B.-Y. Zhang, Global stabilization of the generalized Korteweg–de Vries equation posed on a finite domain. SIAM J. Control Optim. 45 (2006) 927–956. [CrossRef] [MathSciNet] [Google Scholar]
- J. Petersson, Best constants for Gagliardo–Nirenberg inequalities on the real line. Nonlinear Anal. Theory Methods Appl. 67 (2007) 587–600. [CrossRef] [Google Scholar]
- G.G. Doronin and F.M. Natali, An example of non-decreasing solution for the KdV equation posed on a bounded interval. Comptes Rend. Math. 352 (2014) 421–424. [CrossRef] [Google Scholar]
- A. Faminskii and A.A. Nikolaev, On stationary solutions of KdV and mKdV equations, in Differential and difference equations with applications. Vol. 164 of Springer Proc. Math. Stat.. Springer (2016) 63–70. [CrossRef] [Google Scholar]
- O. Goubet and J. Shen, On the dual Petrov–Galerkin formulation of the KdV equation on a finite interval. Adv. Differ. Equ. 12 (2007) 221–239. [Google Scholar]
- J. Chu, J.-M. Coron, P. Shang and S.-X. Tang, Gevrey class regularity of a semigroup associated with a nonlinear Korteweg–de Vries equation. Chinese Ann. Math. Ser. B 39 (2018) 201–212. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.