HTTP_Request2_Exception Unable to connect to tcp://think-ws.ca.edps.org:85. Error: php_network_getaddresses: getaddrinfo failed: Name or service not known Optimal control of third grade fluids with multiplicative noise | ESAIM: Control, Optimisation and Calculus of Variations (ESAIM: COCV)
Open Access
Issue
ESAIM: COCV
Volume 31, 2025
Article Number 16
Number of page(s) 42
DOI https://doi.org/10.1051/cocv/2025002
Published online 18 February 2025
  1. J.E. Dunn and K.R. Rajagopal, Fluids of differential type: critical review and thermodynamical analysis. Int. J. Eng. Sci. 33 (1995) 689–729. [CrossRef] [Google Scholar]
  2. R.L. Fosdick and K.R. Rajagopal, Thermodynamics and stability of fluids of third grade. Proc. Roy. Soc. London Ser. A 339 (1980) 351–377. [Google Scholar]
  3. A.V. Busuioc and T.S. Ratiu, The second grade fluid and averaged Euler equations with Navier-slip boundary conditions. Nonlinearity 16 (2003) 1119–1149. [CrossRef] [MathSciNet] [Google Scholar]
  4. D.D. Holm, J.E. Marsden and T.S. Ratiu, Euler–Poincaré models of ideal fluids with nonlinear dispersion. Phys. Rev. Lett. 80 (1998) 4173–4176. [CrossRef] [Google Scholar]
  5. C. Amrouche and D. Cioranescu, On a class of fluids of grade 3. Int. J. Non-Linear Mech. 32 (1997) 73–88. [CrossRef] [Google Scholar]
  6. A. Sequeira and J. Videman, Global existence of classical solutions for the equations of third grade fluids. J. Math. Phys. Sci. 29 (1995) 47–69. [MathSciNet] [Google Scholar]
  7. A.V. Busuioc and D. Iftimie, Global existence and uniqueness of solutions for the equations of third grade fluids. Int. J. Non-Linear Mech. 39 (2004) 1–12. [CrossRef] [Google Scholar]
  8. A.V. Busuioc and D. Iftimie, A non-Newtonian fluid with Navier boundary conditions. J. Dyn. Differ. Equ. 18 (2007) 357–379. [Google Scholar]
  9. F. Cipriano, P. Didier and S. Guerra, Well-posedness of stochastic third grade fluid equation. J. Differ. Equ. 285 (2021) 496–535. [CrossRef] [Google Scholar]
  10. Y. Tahraoui and F. Cipriano, Local strong solutions to the stochastic third grade fluid equations with Navier boundary conditions. Stoch. PDE: Anal. Comp. 12 (2024) 1699–1744. [CrossRef] [Google Scholar]
  11. Y. Tahraoui and F. Cipriano, Invariant measures for a class of stochastic third-grade fluid equations in 2D and 3D bounded domains. J. Nonlinear Sci. 34 (2024) 107. [CrossRef] [Google Scholar]
  12. F. Abergel and R. Temam, On some control problems in fluid mechanics. Theor. Computat. Fluid Dyn. 1 (1990) 303–325. [CrossRef] [Google Scholar]
  13. J.C. De Los Reyes and R. Griesse, State-constrained optimal control of the three-dimensional stationary Navier–Stokes equations. J. Math. Anal. Appl. 343 (2008) 257–272. [CrossRef] [MathSciNet] [Google Scholar]
  14. M. Hinze and K. Kunisch, Second order methods for optimal control of time-dependent fluid flow. SIAM J. Control Optim. 40 (2001) 925–946. [Google Scholar]
  15. N. Arada and F. Cipriano, Optimal control of non-stationary second grade fluids with Navier-slip boundary conditions. Preprint (2015). https://arxiv.org/abs/1511.01134 [Google Scholar]
  16. N. Chemetov and F. Cipriano, Optimal control for two-dimensional stochastic second grade fluids. Stoch. Processes Appl. 128 (2018) 2710–2749. [CrossRef] [Google Scholar]
  17. F. Cipriano and D. Pereira, On the existence of optimal and ϵ–optimal feedback controls for stochastic second grade fluids. J. Math. Anal. Appl. 475 (2019) 1956–1977. [CrossRef] [MathSciNet] [Google Scholar]
  18. Y. Tahraoui and F. Cipriano, Optimal control of two dimensional third grade fluids. J. Math. Anal. Appl. 523 (2023) 127032. [CrossRef] [Google Scholar]
  19. P. Benner and C. Trautwein, Optimal control problems constrained by the stochastic Navier–-Stokes equations with multiplicative Lévy noise. Math. Nachr. 292 (2019) 1444–1461. [CrossRef] [MathSciNet] [Google Scholar]
  20. P. Benner and C. Trautwein, A stochastic maximum principle for control problems constrained by the stochastic Navier-Stokes equations. Appl. Math. Optim. 84 (2021) 1001–1054. [CrossRef] [MathSciNet] [Google Scholar]
  21. G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions. Encyclopedia Math. Appl., Vol. 44. Cambridge University Press, Cambridge (1992). [Google Scholar]
  22. W. Liu and M. Rockner, Stochastic Partial Differential Equations: An Introduction. Springer International Publishing Switzerland (2015). [CrossRef] [Google Scholar]
  23. T. Roubíček, Nonlinear partial differential equations with applications, Vol. 153 of International Series of Numerical Mathematics. Birkhäuser Verlag, Basel (2005). [Google Scholar]
  24. M. Goebel, On existence of optimal control. Math. Nachr. 93 (1979) 67–73. [CrossRef] [MathSciNet] [Google Scholar]
  25. R.E. Edwards, Functional Analysis. Dover Publications Inc., New York (1995). [Google Scholar]
  26. G. Vallet and A. Zimmermann, Well-posedness for nonlinear SPDEs with strongly continuous perturbation. Proc. Roy. Soc. Edinb. Sect. A: Math. 151 (2021) 265–295. [CrossRef] [Google Scholar]
  27. E. Zeidler, Nonlinear Functional Analysis and its Applications II/A: Linear Monotone Operators. Springer Verlag, New York-Berlin (1989). [Google Scholar]
  28. J. Simon, Compact sets in the space Lp(0, T; B). Ann. Mat. Pur. Appl. 146 (1987) 65–96. [Google Scholar]
  29. R. Temam, Navier–Stokes Equations. Theory and Numerical Analysis. North-Holland Publishing Co., Amsterdam/New York/Oxford (1977). [Google Scholar]
  30. G. Vallet and A. Zimmermann, Well-posedness for a pseudomonotone evolution problem with multiplicative noise. J. Evol. Equ. 19 (2019) 153–202. [CrossRef] [MathSciNet] [Google Scholar]
  31. G. Wachsmuth, Differentiability of implicit functions: beyond the implicit function theorem. J. Math. Anal. Appl. 414 (2014) 259–272. [CrossRef] [MathSciNet] [Google Scholar]
  32. F. Tröltzsch, Optimal Control of Partial Differential Equations: Theory, Methods, and Applications, (Vol. 112). American Mathematical Society (2010). [Google Scholar]
  33. G. Fabbri, F. Gozzi and A. Swiech, Stochastic Optimal Control in Infinite Dimension. Probability and Stochastic Modelling. Springer (2017). [CrossRef] [Google Scholar]
  34. S.S. Sritharan, An Introduction to Deterministic and Stochastic Control of Viscous Flow. Optimal Control of Viscous Flow. SIAM, Philadelphia (1998) 1–42. [Google Scholar]
  35. N. Chemetov and F. Cipriano, Optimal control for two-dimensional stochastic second grade fluids. Stoch. Processes Appl. 128 (2018) 2710–2749. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.