Open Access
Issue
ESAIM: COCV
Volume 31, 2025
Article Number 59
Number of page(s) 30
DOI https://doi.org/10.1051/cocv/2025047
Published online 18 July 2025
  1. J. Shinar, Solution techniques for realistic pursuit-evasion games, in Advances in Control and Dynamic Systems, edited by C. Leondes. Academic Press, New York, NY, USA (1981) 63-124. [Google Scholar]
  2. V. Turetsky and V.Y. Glizer, Robust state-feedback controllability of linear systems to a hyperplane in a class of bounded controls. J. Optimiz. Theory App. 123 (2004) 639-667. [Google Scholar]
  3. J. Shinar, V.Y. Glizer and V. Turetsky, Solution of a singular zero-sum linear-quadratic differential game by regularization. Int. Game Theory Rev. 16 (2014) 1440007. [Google Scholar]
  4. V. Turetsky, V.Y. Glizer and J. Shinar, Robust trajectory tracking: Differential game/cheap control approach. Int. J. Syst. Sci. 45 (2014) 2260-2274. [Google Scholar]
  5. F.M. Hamelin and M.A. Lewis, A differential game theoretical analysis of mechanistic models for territoriality. J. Math. Biol. 51 (2021) 665-694. [Google Scholar]
  6. Y. Hu, B. Ksendal and A. Sulem, Singular mean-field control games. Stoch. Anal. Appl. 35 (2017) 823-851. [Google Scholar]
  7. A.E. Bryson and Y.C. Ho, Applied Optimal Control. Hemisphere, New York, NY, USA (1975). [Google Scholar]
  8. R. Isaacs, Differential Games. John Wiley and Sons, New York, NY, USA (1967). [Google Scholar]
  9. T. Basar and G.J. Olsder, Dynamic Noncooperative Game Theory. SIAM Books, Philadelphia, PA, USA (1999). [Google Scholar]
  10. J. Sun and J. Yong, Linear quadratic stochastic differential games: open-loop and closed-loop saddle points. SIAM J. Control 52 (2014) 4082-4121. [Google Scholar]
  11. J. Sun and J. Yong, Linear—quadratic stochastic two-person nonzero-sum differential games: open-loop and closed-loop Nash equilibria. Stoch. Proc. Appl. 129 (2019) 381-418. [Google Scholar]
  12. V.Y. Glizer and O. Kelis, Solution of a zero-sum linear quadratic differential game with singular control cost of minimiser. J. Control Decis. 2 (2015) 155-184. [Google Scholar]
  13. V.Y. Glizer and O. Kelis, Upper value of a singular infinite horizon zero-sum linear-quadratic differential game. Pure Appl. Funct. Anal. 2 (2017) 511-534. [Google Scholar]
  14. V.Y. Glizer, Asymptotic solution of zero-sum linear-quadratic differential game with cheap control for minimizer. Nonlinear Differ. Equ. Appl. 7 (2000) 231-258. [Google Scholar]
  15. F. Amato and A. Pironti, A note on singular zero-sum linear quadratic differential games. Proceedings of the 33rd IEEE Conference on Decision and Control, Lake Buena Vista, FL, USA (1994) 1533-1535. [Google Scholar]
  16. K. Forouhar, Singular differential game techniques and closed-loop strategies. Control Dyn. Syst. 17 (1981) 379-419. [Google Scholar]
  17. E.N. Simakova, Differential pursuit game. Avtomat. Telemekh 2 (1967) 5-14. [Google Scholar]
  18. K. Forouhar, C.T. Leondes, Singular differential game numerical techniques. J. Optimiz. Theory App. 37 (1982) 69-87. [Google Scholar]
  19. J.F. Bonnans and F.J. Silva, First and second order necessary conditions for stochastic optimal control problems. Appl. Math. Opt. 65 (2012) 403-439. [Google Scholar]
  20. H.-F. Chen, Unified controls applicable to general case under quadratic index. Acta Math. Appl. Sin. 5 (1982) 45-52. [Google Scholar]
  21. R. Gabasov and F.M. Kirillova, High order necessary conditions for optimality. SIAM J. Control 10 (1972) 127-168. [Google Scholar]
  22. Y. Ho, Linear stochastic singular control problems. J. Optim. Theory Appl. 9 (1972) 24-31. [Google Scholar]
  23. D. Hoehener, Variational approach to second-order optimality conditions for control problems with pure state constraints. SIAM J. Control 50 (2012) 1139-1173. [Google Scholar]
  24. D.H. Jacobson and J.L. Speyer, Necessary and sufficient conditions for optimality for singular control problems: a limit approach. J. Math. Anal. Appl. 34 (1971) 239-266. [Google Scholar]
  25. A.J. Krener, The high order maximal principle and its application to singular extremals. SIAM J. Control 15 (1977) 256-293. [Google Scholar]
  26. J.B. Moore, The singular solutions to a singular quadratic minimization problem. Int. J. Control 20 (1974) 383-393. [Google Scholar]
  27. J. Speyer and D. Jacobson, Necessary and sufficient conditions for optimality for singular control problems. J. Math. Anal. Appl. 33 (1971) 163-187. [Google Scholar]
  28. J. Sun, X. Li and J. Yong, Open-loop and closed-loop solvabilities for stochastic linear quadratic optimal control problems. SIAM J. Control 54 (2016) 2274-2308. [Google Scholar]
  29. J.C. Willems, A. Kitapci and L.M. Silverman, Singular optimal control: a geometric approach. SIAM J. Control 24 (1986) 323-337. [Google Scholar]
  30. H. Zhang and X. Zhang, Pointwise second-order necessary conditions for stochastic optimal controls. Part I. The case of convex control constraint. SIAM J. Control 53 (2015) 2267-2296. [Google Scholar]
  31. J. Xu and H. Zhang, Output feedback control for irregular LQ problem. IEEE Contr. Syst. Lett. 5 (2021) 87-880. [Google Scholar]
  32. H. Zhang and J. Xu, Optimal control with irregular performance. Sci. China Inform. Sci. 62 (2019) 192203. [Google Scholar]
  33. H. Zhang and J. Xu, The difference and unity of irregular LQ control and standard LQ control and its solution. ESAIM: COCV 27 (2021) S31. [Google Scholar]
  34. Y. Liang, B.-C. Wang, J. Xu and H. Zhang, Open-loop saddle points for irregular linear-quadratic zero-sum games. 62nd IEEE Annual Conference on Decision and Control (2023). [Google Scholar]
  35. V.Y. Glizer, Nash equilibrium sequence in a singular two-person linear-quadratic differential game. Axioms 10 (2021) 132. [Google Scholar]
  36. Y. Ho, A. Bryson and S. Baron, Differential games and optimal pursuit-evasion strategies. IEEE T. Automat. Contr. 10 (1965) 385-389. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.