Open Access
Issue
ESAIM: COCV
Volume 31, 2025
Article Number 58
Number of page(s) 21
DOI https://doi.org/10.1051/cocv/2025046
Published online 16 July 2025
  1. L. Modica, The gradient theory of phase transitions and the minimal interface criterion. Arch. Rational Mech. Anal. 98 (1987) 123-142. [CrossRef] [MathSciNet] [Google Scholar]
  2. L. Modica and S. Mortola, Un esempio di T--convergenza, Boll. Un. Mat. Ital. B 14 (1977), 285-299. [MathSciNet] [Google Scholar]
  3. I. Fonseca, M. Morini and V. Slastikov, Surfactants in foam stability: a phase-field model. Arch. Rational Mech. Anal. 183 (2007) 411-456. [Google Scholar]
  4. K. Chen, C. Jayaprakash, R. Pandit and W. Wenzel, Microemulsions: a Landau-Ginzburg Theory. Phys. Rev. Lett. 65 (1990) 2736-2739. [Google Scholar]
  5. A. Ciach and B. Holyst, Periodic surfaces and cubic phases in mixtures of oil, water and Surfactant. J. Chem. Phys. 110 (1999) 3207-3214. [Google Scholar]
  6. G. Gompper and S. Klein, Ginzburg-Landau theory of aqueous surfactant solutions. J. Phys. II France 2 (1992) 1725-1744. [Google Scholar]
  7. S. Komura and H. Kodama, Two-order-parameter model for an oil-water-surfactant system. Phys. Rev. E 55 (1997) 1722-1727. [Google Scholar]
  8. D. Myers, Surfactant Science and Technology. John Wiley & Sons (2020). [Google Scholar]
  9. E. Acerbi and G. Bouchitte, A general class of phase transition models with weighted interface energy. Ann. Inst. H. Poincare C Anal. Non Linéaire 25 (2008) 1111-1143. [Google Scholar]
  10. M. Baia, A.C. Barroso and J. Matias, A model for phase transitions with competing terms. Q. J. Math. 68 (2017) 957-1000. [Google Scholar]
  11. M. Cicalese and T. Heilmann, Surfactants in the two gradient theory of phase transitions. Preprint (2024). Available online at https://arxiv.org/abs/2401.03840 [Google Scholar]
  12. G. Alberti, G. Bellettini, G. Cassandro, G. and E. Presutti, Surface tension in Ising systems with Kac potentials. J. Stat. Phys. 82 (1996) 743-796. [CrossRef] [Google Scholar]
  13. E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces. Bull. Sci. Math. 136 (2012) 521-573. [Google Scholar]
  14. C. Bucur and E. Valdinoci, Nonlocal Diffusion and Applications. Lecture Notes of the Unione Matematica Italiana, vol. 20. Springer, Cham (2016). [Google Scholar]
  15. R. Alicandro, N. Ansini, A. Braides, A. Piatnitski, and A. Tribuzio, A variational theory of convolution-type junctionals, SpringerBriefs on PDEs and Data Science. Springer, Singapore (2023) viii+116. [Google Scholar]
  16. F. Bobaru, J.T. Foster, P.H. Geubelle and S.A. Silling, Handbook of Peridynamic Modeling. Advances in Applied Mathematics. CRC press, Boca Raton (2016). [Google Scholar]
  17. P. Diehl, R. Lipton, T. Wick and M. Tyagi, A comparative review of peridynamics and phase- field models for engineering fracture mechanics. Comput. Mech. 69 (2022) 1259-1293. [Google Scholar]
  18. Q. Du and K. Zhou, Mathematical analysis for the peridynamic nonlocal continuum theory. ESAIM: Math. Model. Numer. Anal. 45 (2011) 217-234. [Google Scholar]
  19. S.A. Silling and R.B. Lehoucq, Peridynamic theory of solid mechanics. Adv. Appl. Mech. 44 (2010) 73-168. [CrossRef] [Google Scholar]
  20. G. Alberti and G. Bellettini, A non-local anisotropic model for phase transitions: asymptotic behaviour of rescaled energies. Eur. J. Appl. Math. 9 (1998) 261-284. [CrossRef] [Google Scholar]
  21. G. Alberti and G. Bellettini, A non-local anisotropic model for phase transitions. I. The optimal profile problem. Math. Ann. 310 (1998) 527-560. [CrossRef] [MathSciNet] [Google Scholar]
  22. R. Alicandro, A. Braides, M. Cicalese and M. Solci, Discrete variational problems with interfaces. Cambridge Monographs on Applied and Computational Mathematics, vol. 40. Cambridge University Press, Cambridge (2024). [Google Scholar]
  23. R. Alicandro, M. Cicalese and L. Sigalotti, Phase transitions in presence of surfactants: from discrete to continuum. Interfaces Free Bound. 14 (2012) 65-103. [Google Scholar]
  24. G. Palatucci, O. Savin and E. Valdinoci, Local and global minimizers for a variational energy involving a fractional norm. Ann. Mat. 192 (2013) 673-718. [Google Scholar]
  25. O. Savin and E. Valdinoci, T-convergence for nonlocal phase transitions. Ana. I. H. Poincare AN 29 (2012) 479-500. [Google Scholar]
  26. O. Savin and E. Valdinoci, Density estimates for a variational model driven by the Gagliardo norm. J. Math. Pures Appl. 101 (2014) 1-26. [Google Scholar]
  27. T. Heilmann, T-convergence for nonlocal phase transitions involving the H1/2 norm, in preparation. [Google Scholar]
  28. L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Clarendon Press, Oxford (2000). [Google Scholar]
  29. A. Braides, T-convergence for beginners. Oxford Lecture Series in Mathematics and its Applications, vol. 22. Oxford University Press, Oxford (2002) xii+218. [Google Scholar]
  30. G. Dal Maso, An introduction to T-convergence. Progress in Nonlinear Differential Equations and their Application, vol. 8. Birkhäuser Boston (1993) xiv+340. [Google Scholar]
  31. S. Baldo, Minimal interface criterion for phase transitions in mixtures of Cahn-Hilliard fluids. Ann. Inst. H. Poincaré C Anal. Non Linéaire 7 (1990) 67-90. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.