Open Access
Issue
ESAIM: COCV
Volume 31, 2025
Article Number 19
Number of page(s) 52
DOI https://doi.org/10.1051/cocv/2025009
Published online 20 March 2025
  1. O. Guéant, The Financial Mathematics of Market Liquidity. Chapman & Hall/CRC Financial Mathematics Series. CRC Press, Boca Raton, FL (2016). [Google Scholar]
  2. T. Kruse and A. Popier, Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting. Stoch. Process. Appl. 126 (2016) 2554–2592. [Google Scholar]
  3. R. Almgren and N. Chriss, Optimal execution of portfolio transactions. J. Risk 3 (2001) 5–40. [Google Scholar]
  4. J. Gatheral, No-dynamic-arbitrage and market impact. Quant. Finance 10 (2010) 749–759. [MathSciNet] [Google Scholar]
  5. O. Guéant, Permanent market impact can be nonlinear. (2014). [Google Scholar]
  6. P.A. Forsyth, J.S. Kennedy, S. Tse and H. Windcliff, Optimal trade execution: a mean quadratic variation approach. J. Econ. Dyn. Control 36 (2012) 1971–1991. [Google Scholar]
  7. A. Schied and T. Schöneborn, Risk aversion and the dynamics of optimal liquidation strategies in illiquid markets. Finance Stoch. 13 (2009) 181–204. [CrossRef] [MathSciNet] [Google Scholar]
  8. S. Ankirchner, M. Jeanblanc and T. Kruse, BSDEs with singular terminal condition and a control problem with constraints. SIAM J. Control Optim. 52 (2014) 893–913. [Google Scholar]
  9. G. Fu, U. Horst and X. Xia, Portfolio liquidation games with self-exciting order flow. Math. Finance 32 (2022) 1020–1065. [Google Scholar]
  10. A.D. Sezer, T. Kruse and A. Popier, Backward stochastic differential equations with non-Markovian singular terminal values. Stoch. Dyn. 19 (2019) 1950006. [Google Scholar]
  11. O. Guéant, Optimal execution and block trade pricing: a general framework. Appl. Math. Finance 22 (2015) 336–365. [Google Scholar]
  12. A. Schied, T. Schöneborn and M. Tehranchi, Optimal basket liquidation for CARA investors is deterministic. Appl. Math. Finance 17 (2010) 471–489. [Google Scholar]
  13. E. Pardoux and A. Rascanu, Stochastic Differential Equations, Backward SDEs, Partial Differential Equations. Vol. 69 of Stochastic Modelling and Applied Probability. Springer-Verlag (2014). [Google Scholar]
  14. T. Kruse and A. Popier, BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration. Stochastics 88 (2016) 491–539. [MathSciNet] [Google Scholar]
  15. S. Drapeau, G. Heyne and M. Kupper, Minimal supersolutions of convex BSDEs. Ann. Probab. 41 (2013) 3973–4001. [Google Scholar]
  16. A. Popier, Limit behaviour of BSDE with jumps and with singular terminal condition. ESAIM: PS 20 (2016) 480–509. [Google Scholar]
  17. G. Barles, R. Buckdahn and E. Pardoux, Backward stochastic differential equations and integral-partial differential equations. Stoch. Stoch. Rep. 60 (1997) 57–83. [CrossRef] [Google Scholar]
  18. A. Popier, Integro-partial differential equations with singular terminal condition. Nonlinear Anal. 155 (2017) 72–96. [Google Scholar]
  19. O.A. Ladyženskaja, V.A. Solonnikov and N.N. Ural’ceva, Linear and quasilinear equations of parabolic type. Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23. American Mathematical Society, Providence, R.I. (1968). [Google Scholar]
  20. P. Graewe, U. Horst and E. Séré, Smooth solutions to portfolio liquidation problems under price-sensitive market impact. Stochastic Process. Appl. 128 (2018) 979–1006. [Google Scholar]
  21. P. Graewe and A. Popier, Asymptotic approach for backward stochastic differential equation with singular terminal condition. Stochastic Process. Appl. 133 (2021) 247–277. [Google Scholar]
  22. A. Friedman, Partial Differential Equations of Parabolic Type. Dover Publications (2008). [Google Scholar]
  23. Z. Bučková, M. Ehrhardt and M. Gönther, Fichera theory and its application in finance, in Progress in Industrial Mathematics at ECMI 2014, edited by G. Russo, V. Capasso, G. Nicosia and V. Romano. Springer International Publishing, Cham (2016) 103–111. [Google Scholar]
  24. M.G. Crandall, H. Ishii and P.-L. Lions, User’s guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. (N.S.) 27 (1992) 1–67. [CrossRef] [MathSciNet] [Google Scholar]
  25. M. Aksu, A. Popier and A.D. Sezer, Optimal liquidation with conditions on minimum price. arXiv:2308.02276 (2023). [Google Scholar]
  26. M. Ahmadi, A. Popier and A.D. Sezer, Backward stochastic differential equations with non-Markovian singular terminal conditions for general driver and filtration. Electron. J. Probab. 26 (2021) Paper No. 64, 27. [Google Scholar]
  27. S.A. Samuel, A. Popier and A.D. Sezer, Continuity problem for singular BSDE with random terminal time. ALEA Lat. Am. J. Probab. Math. Stat. 19 (2022) 1185–1220. [Google Scholar]
  28. R. Almgren, Optimal trading with stochastic liquidity and volatility. SIAM J. Financ. Math. 3 (2012) 163–181. [Google Scholar]
  29. D. Nualart, The Malliavin Calculus and Related Topics. Probability and its Applications (New York), 2nd edn. Springer-Verlag, Berlin (2006). [Google Scholar]
  30. N. El Karoui, S. Peng and M. Quenez, Backward stochastic differential equations in finance. Math. Finance 7 (1997) 1–71. [CrossRef] [MathSciNet] [Google Scholar]
  31. A. Popier, Backward stochastic differential equations with singular terminal condition. Stochastic Process. Appl. 116 (2006) 2014–2056. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.