Open Access
Issue |
ESAIM: COCV
Volume 31, 2025
|
|
---|---|---|
Article Number | 18 | |
Number of page(s) | 23 | |
DOI | https://doi.org/10.1051/cocv/2025007 | |
Published online | 20 March 2025 |
- M. Huang, R.P. Malhamé and P.E. Caines. Large population stochastic dynamic games: closed-loop McKean–Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 6 (2006) 221–251. [CrossRef] [MathSciNet] [Google Scholar]
- J.-M. Lasry and P.-L. Lions, Mean field games. Jpn. J. Math. 2 (2007) 229–260. [Google Scholar]
- Y. Achdou, M.-K. Dao, O. Ley and N. Tchou, A class of infinite horizon mean field games on networks. Netw. Heterogeneous Media 14 (2019) 537–566. [Google Scholar]
- Y. Achdou, M.-K. Dao, O. Ley and N. Tchou, Finite horizon mean field games on networks. Calc. Var. Part. Differ. Equ. 59 (2020) Paper No. 157, 34. [Google Scholar]
- F. Camilli and C. Marchi, A continuous dependence estimate for viscous Hamilton–Jacobi equations on networks with applications. Calc. Var. Part. Differ. Equ. 63 (2024) Paper No. 18, 22. [Google Scholar]
- F. Camilli and C. Marchi, Stationary mean field games systems defined on networks. SIAM J. Control Optim. 54 (2016) 1085–1103. [Google Scholar]
- W. Feller, Diffusion processes in one dimension. Trans. Am. Math. Soc. 77 (1954) 1–31. [Google Scholar]
- W. Feller, The parabolic differential equations and the associated semigroups of transformation. Ann. Math. 55 (1952) 468–519. [Google Scholar]
- K. Ito and H.P. McKean, Brownian motions on a half line. Ill. J. Math. 7 (1963) 181–231. [Google Scholar]
- R. Bass, A stochastic differential equation with a sticky point. Electron. J. Probab. 19 (2014) 22. [Google Scholar]
- H.J. Engelbert and G. Peskir, Stochastic differential equations for sticky Brownian motion. Stochastics 86 (2014) 993–1021. [Google Scholar]
- M. Salins and K. Spiliopoulos, Markov processes with spatial delay: path space characterization, occupation time and properties. Stoch. Dyn. 17 (2017) 1750042, 21. [Google Scholar]
- J.M. Harrison and A.J. Lemoine, Sticky Brownian motion as the limit of storage processes. J. Appl. Probab. 18 (1981) 216–226. [Google Scholar]
- Y. Kabanov, M. Kijima and S. Rinaz, A positive interest rate model with sticky barrier. Quant. Finance 7 (2007) 269–284. [MathSciNet] [Google Scholar]
- À. Calsina and J.Z. Farkas, Steady states in a structured epidemic model with Wentzell boundary condition. J. Evol. Equ. 12 (2012) 495–512. [Google Scholar]
- V. Kostrykin, J. Potthoff and R. Schrader, Brownian motions on metric graphs. J. Math. Phys. 53 (2012) 095206, 36. [Google Scholar]
- V. Kostrykin, J. Potthoff and R. Schrader, Construction of the paths of Brownian motions on star graphs. II. Commun. Stoch. Anal. 6 (2012) 247–261. [Google Scholar]
- V. Kostrykin, J. Potthoff and R. Schrader, Construction of the paths of Brownian motions on star graphs. I. Commun. Stoch. Anal. 6 (2012) 223–245. [Google Scholar]
- S. Bonaccorsi and M. D’Ovidio, Sticky brownian motions on star graphs. Fract. Calc. Appl. Anal. 27 (2024) 2859–2891. [CrossRef] [MathSciNet] [Google Scholar]
- J. Berry and F. Colantoni, Sticky diffusions on star graphs : characterization and Ito formula. Preprint, arXiv:2411.05441 (2024). [Google Scholar]
- J.-B. Casteras, L. Monsaingeon and F. Santambrogio, Sticky-reflecting diffusion as a wasserstein gradient flow (2024). Preprint. [Google Scholar]
- N. Bou-Rabee and M.C. Holmes-Cerfon, Sticky Brownian motion and its numerical solution. SIAM Rev. 62 (2020) 164–195. [Google Scholar]
- M. Aleandri, M. Colangeli and D. Gabrielli, A combinatorial representation for the invariant measure of diffusion processes on metric graphs. ALEA, Lat. Am. J. Probab. Math. Stat. 18 (2021) 1773–1799. [Google Scholar]
- I. Ohavi, Quasi linear parabolic pde posed on a network with non linear Neumann boundary condition at vertices. J. Math. Anal. Appl. 500 (2021) Paper No. 125154, 29. [Google Scholar]
- J. von Below and S. Nicaise, Dynamical interface transition in ramified media with diffusion. Comm. Part. Differ. Equ. 21 (1996) 255–279. [Google Scholar]
- D. Mugnolo and S. Romanelli, Dynamic and generalized Wentzell node conditions for network equations. Math. Methods Appl. Sci. 30 (2007) 681–706. [Google Scholar]
- C. Villani, Optimal transport, Vol. 338 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin (2009). [Google Scholar]
- M.I. Freidlin and A.D. Wentzell, Diffusion processes on graphs and the averaging principle. Ann. Probab. 21 (1993) 2215–2245. [Google Scholar]
- M. Freidlin and S.-J. Sheu, Diffusion processes on graphs: stochastic differential equations, large deviation principle. Probab. Theory Related Fields 116 (2000) 181–220. [CrossRef] [MathSciNet] [Google Scholar]
- S.N. Ethier and T.G. Kurtz, Markov Processes. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons, Inc., New York (1986). [Google Scholar]
- G. Barles, O. Ley and E. Topp, Nonlocal Hamilton–Jacobi Equations on a network with Kirchhoff type conditions. Preprint, arXiv:2411.13126 (2024). [Google Scholar]
- J. Mawhin, Variations on Poincaré-Miranda’s theorem. Adv. Nonlinear Stud. 13 (2013) 209–217. [CrossRef] [MathSciNet] [Google Scholar]
- C. Miranda, Un’osservazione su un teorema di Brouwer. Boll. Un. Mat. Ital. 3 (1940) 5–7. [Google Scholar]
- D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Vol. 224 of Classics in Mathematics. Springer Berlin Heidelberg (2001). [Google Scholar]
- W.H. Fleming and H.M. Soner, Controlled Markov Processes and Viscosity Solutions, Vol. 25. Springer Science & Business Media (2006). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.