Open Access
Issue |
ESAIM: COCV
Volume 31, 2025
|
|
---|---|---|
Article Number | 48 | |
Number of page(s) | 32 | |
DOI | https://doi.org/10.1051/cocv/2025034 | |
Published online | 04 June 2025 |
- S. Prajna, A. Jadbabaie and G.J. Pappas, A framework for worst-case and stochastic safety verification using barrier certificates. IEEE Trans. Automatic Control 52 (2007) 1415–142. [CrossRef] [MathSciNet] [Google Scholar]
- T. Ersal, I. Kolmanovsky, N. Masoud, N. Ozay, J. Scruggs, R. Vasudevan and G. Orosz, Connected and automated road vehicles: state of the art and future challenges. Veh. Syst. Dyn. 58 (2020) 672–704. [CrossRef] [Google Scholar]
- J. Breeden and D. Panagou, Guaranteed safe spacecraft docking with control barrier functions. IEEE Control Syst. Lett. 6 (2022) 2000–2005. [CrossRef] [MathSciNet] [Google Scholar]
- F. Ferraguti, C. Talignani Landi, A. Singletary, H-C. Lin, A. Ames, C. Secchi and M. Bonfe, Safety and efficiency in robotics: the control barrier functions approach. IEEE Robot. Autom. Mag. 29 (2022) 139–151. [CrossRef] [Google Scholar]
- M. Ghanbarpour, M. Maghenem and A. Saoud, Barrier functions for robust safety in differential inclusions, Part I: sufficient conditions, in 60th IEEE Conference on Decision and Control (2021) 5338–5343. [Google Scholar]
- R. Wisniewski and C. Sloth, Converse barrier certificate theorems. IEEE Trans. Autom. Control 61 (2016) 1356–1361. [CrossRef] [Google Scholar]
- S. Ratschan, Converse theorems for safety and barrier certificates. IEEE Trans. Autom. Control 63 (2018) 2628–2632. [CrossRef] [Google Scholar]
- J. Liu, Converse barrier functions via Lyapunov functions. IEEE Trans. Autom. Control 67 (2022) 497–503. [CrossRef] [Google Scholar]
- J.P. Aubin and A. Cellina, Differential Inclusions: Set-Valued Maps and Viability Theory, Vol. 264. Springer Science & Business Media (2012). [Google Scholar]
- M. Maghenem and R.G. Sanfelice, On the converse safety problem for differential inclusions: Solutions, regularity, and time-varying barrier functions. IEEE Trans. Autom. Control (2022) 1. [Google Scholar]
- A.D. Ames, X. Xu, J.W. Grizzle and P. Tabuada, Control barrier function based quadratic programs for safety critical systems. IEEE Trans. Autom. Control 62 (2017) 3861–3876. [CrossRef] [Google Scholar]
- R. Konda, A.D. Ames and S. Coogan, Characterizing safety: minimal control barrier functions from scalar comparison systems. IEEE Control Syst. Lett. 5 (2020) 523–528. [Google Scholar]
- H. Kong, F. He, X. Song, W.N.N. Hung and M. Gu, Exponential-condition-based barrier certificate generation for safety verification of hybrid systems, in Proceedings of the Computer Aided Verification, Springer Berlin Heidelberg, Berlin, Heidelberg (2013) 242–257. [Google Scholar]
- M. Maghenem and R.G. Sanfelice, Sufficient conditions for forward invariance and contractivity in hybrid inclusions using barrier functions. Automatica (2020) 109328. [Google Scholar]
- J. Liu, Converse barrier functions via Lyapunov functions. IEEE Transactions on Automatic Control. 67 (2021) 497–503. [Google Scholar]
- M. Jankovic, Robust control barrier functions for constrained stabilization of nonlinear systems. Automatica 96 (2018) 359–367. [CrossRef] [Google Scholar]
- P. Seiler, M. Jankovic and E. Hellstrom, Control barrier functions with unmodeled input dynamics using integral quadratic constraints. IEEE Control Syst. Lett. 6 (2021) 1664–1669. [Google Scholar]
- M. Maghenem, M. Ghanbarpour and A. Saoud, Sufficient conditions for robust safety in differential inclusions using barrier functions. Automatica 171 (2025) 111938. [CrossRef] [Google Scholar]
- S. Prajna and A. Rantzer, On the necessity of barrier certificates. IFAC Proc. Vol. 38 (2005) 526–531. [CrossRef] [Google Scholar]
- A. Subbaraman and A.R. Teel, On the equivalence between global recurrence and the existence of a smooth Lyapunov function for hybrid systems. Syst. Control Lett. 88 (2016) 54–61. [CrossRef] [Google Scholar]
- M. Ghanbarpour and M. Maghenem, Barrier Functions for Robust Safety in Differential Inclusions. Part II: the Converse Problem, in 60th IEEE Conference on Decision and Control (2021) 5344–5349. [Google Scholar]
- R.T. Rockafellar and J.B.R. Wets, Variational Analysis, Vol. 317. Springer Science & Business Media (1997). [Google Scholar]
- J.P. Aubin and H. Frankowska, Set-valued Analysis. Springer Science & Business Media (2009). [CrossRef] [Google Scholar]
- A.R. Teel and L. Praly, A smooth Lyapunov function from a class-𝒦ℒ estimate involving two positive semidefinite functions. ESAIM: COCV 5 (2000) 313–367. [CrossRef] [EDP Sciences] [Google Scholar]
- A.F. Filippov, Differential Equations with Discontinuous Righthand Sides: Control Systems, Vol. 18. Springer Science & Business Media (2013). [Google Scholar]
- R. Goebel, R.G. Sanfelice and A.R. Teel, Hybrid Dynamical Systems: Modeling, Stability, and Robustness. Princeton University Press (2012). [Google Scholar]
- M. Di Benedetto, S. Di Gennaro and A. D'Innocenzo, Digital self-triggered robust control of nonlinear systems. Int. J. Control 86 (2013). [Google Scholar]
- M.L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley & Sons (2014). [Google Scholar]
- A. Puri, V. Borkar and P. Varaiya, e-approximation of differential inclusions, in International Hybrid Systems Workshop. Springer (1995) 362–376. [Google Scholar]
- F. Blanchini, Survey paper: Set invariance in control. Automatica 35 (1999) 1747–1767. [CrossRef] [MathSciNet] [Google Scholar]
- J.P. Aubin, Viability Theory. Birkhauser Boston Inc., Cambridge, MA, USA (1991). [Google Scholar]
- F.H. Clarke, Y.S. Ledyaev and R.J. Stern, Asymptotic stability and smooth Lyapunov functions. J. Differ. Equ. 149 (1998) 69–114. [Google Scholar]
- M. Maghenem and D. Karaki, On a strong robust-safety notion for differential inclusions. IEEE Trans. Autom. Control 69 (2024) 2237–2248. [CrossRef] [Google Scholar]
- H. Whitney, Analytic extensions of differentiable functions defined in closed sets. Trans. Am. Math. Soc. 36 (1934) 63–89. [CrossRef] [Google Scholar]
- M. Katetov, On real-valued functions in topological spaces. Fundam. Math. 1 (1951) 85–91. [CrossRef] [Google Scholar]
- M. Maghenem and M. Ghanbarpour, A converse robust-safety theorem for differential inclusions. arXiv preprint arXiv:2208.11364 (2022). [Google Scholar]
- F.H. Clarke, Y.S. Ledyaev, R.J. Stern and P.R. Wolenski, Nonsmooth Analysis and Control Theory, Vol. 178. Springer Science & Business Media (2008). [Google Scholar]
- L. Hormander, Linear Partial Differential Operators. Springer (1963). [CrossRef] [Google Scholar]
- F.W. Wilson, Smoothing derivatives of functions and applications. Trans. Am. Math. Soc. 139 (1969) 413–428. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.