Open Access
Issue |
ESAIM: COCV
Volume 31, 2025
|
|
---|---|---|
Article Number | 49 | |
Number of page(s) | 25 | |
DOI | https://doi.org/10.1051/cocv/2025036 | |
Published online | 04 June 2025 |
- J.T. Schwartz, Generalizing the Lusternik-Schnirelman theory of critical points. Commun. Pure Appl. Math. 17 (1964) 307–315. [CrossRef] [Google Scholar]
- J.P. Serre, Homologie singuliere des espaces fibres. Ann. Math. 54 (1951) 425–505. [CrossRef] [MathSciNet] [Google Scholar]
- S.B. Alexander, I.D. Berg and R.L. Bishop, The Riemannian obstacle problem. Illinois J. Math. 31 (1987) 167–184. [CrossRef] [MathSciNet] [Google Scholar]
- A. Marino and D. Scolozzi, Geodetiche con ostacolo. Boll. Un. Mat. Ital. B 2 (1983) 1–31. [MathSciNet] [Google Scholar]
- D. Scolozzi, Un risultato di locale unicità per le geodetiche su varieta con bordo. Boll. Un. Mat. Ital. B 5 (1986) 309–327. [MathSciNet] [Google Scholar]
- F.E. Wolter, Interior metric shortest paths and loops in Riemannian manifolds with not necessarily smooth boundary. (1979) preprint. [Google Scholar]
- M. Ghimenti, Geodesics in conical manifolds. Topol. Methods Nonlinear Anal. 25 (2005) 235–261. [CrossRef] [MathSciNet] [Google Scholar]
- M. Degiovanni and L. Morbini, Closed geodesics with Lipschitz obstacle. J. Math. Anal. Appl. 233 (1999) 767–789. [CrossRef] [MathSciNet] [Google Scholar]
- M. Degiovanni and M. Marzocchi, A critical point theory for nonsmooth functionals. Ann. Mat. Pura Appl. 167 (1994) 73–100. [CrossRef] [MathSciNet] [Google Scholar]
- S. Lancelotti and M. Marzocchi, Lagrangian systems with Lipschitz obstacle on manifolds. Topol. Methods Nonlinear Anal. 27 (2006) 229–253. [MathSciNet] [Google Scholar]
- A. Canino, Existence of a closed geodesic on p-convex sets. Ann. Inst. H. Poincare C Anal. Non Linéaire 5 (1988) 501-518.501 [CrossRef] [Google Scholar]
- A. Canino, Local properties of geodesics on p-convex sets. Ann. Mat. Pura Appl. 159 (1991) 17–44. [CrossRef] [MathSciNet] [Google Scholar]
- A. Canino, On p-convex sets and geodesies. J. Differ. Equ. 75 (1988) 118–157. [CrossRef] [Google Scholar]
- G. Colombo and L. Thibault, Prox-regular sets and applications, In Handbook of Nonconvex Analysis and Applications, edited by D.Y. Gao and D. Motreanu. International Press, Boston (2010) 99–182. [Google Scholar]
- R.A. Poliquin and R.T. Rockafellar, Prox-regular functions in variational analysis. Trans. Amer. Math. Soc. 348 (1996) 1805–1838. [Google Scholar]
- A. Barani, S. Hosseini and M.R. Pouryayevali, On the metric projection onto ϕ-convex subsets of Hadamard manifolds. Rev. Mat. Comput. 26 (2013) 815–826. [CrossRef] [Google Scholar]
- S. Hosseini and M.R. Pouryayevali, On the metric projection onto prox-regular subsets of Riemannian manifolds. Proc. Am. Math. Soc. 141 (2013) 233–244. [Google Scholar]
- B. Maury and J. Venel, A mathematical framework for a crowd motion model. C. R. Math. Acad. Sci. Paris. 346 (2008) 1245–1250. [CrossRef] [MathSciNet] [Google Scholar]
- A. Tanwani, B. Brogliato and C. Prieur, Stability and observer design for Lur'e systems with multivalued, nonmonotone, time-varying nonlinearities and state jumps. SIAM J. Control Optim. 52 (2014) 3639–3672. [CrossRef] [MathSciNet] [Google Scholar]
- M.R. Pouryayevali and H. Radmanesh, Sets with the unique footpoint property and ϕ-convex subsets of Riemannian manifolds. J. Convex Anal. 26 (2019) 617–633. [MathSciNet] [Google Scholar]
- M.R. Pouryayevali and H. Radmanesh, Minimizing curves in prox-regular subsets of Riemannian manifolds. Set-Valued and Var. Anal. 30 (2021) 677–694. [Google Scholar]
- D. Azagra and J. Ferrera, Proximal calculus on Riemannian manifolds. Mediterr. J. Math. 2 (2005) 437–450. [CrossRef] [MathSciNet] [Google Scholar]
- D. Azagra, J. Ferrera and F. Lopez-Mesas, Nonsmooth analysis and Hamilton-Jacobi equations on Riemannian manifolds. J. Funct. Anal. 220 (2005) 304–361. [CrossRef] [MathSciNet] [Google Scholar]
- F.H. Clarke, Yu.S. Ledyaev, R.J. Stern and P.R. Wolenski, Nonsmooth Analysis and Control Theory. Graduate Texts in Mathematics 178. Springer, New York (1998). [Google Scholar]
- M.P. do Carmo, Riemannian Geometry. Birklmuser, Boston (1992). [CrossRef] [Google Scholar]
- T. Sakai, Riemannian Geometry. Translations of Mathematical Monographs 149. American Mathematical Society (1996). [Google Scholar]
- W.P. Klingenberg, Riemannian Geometry. Walter de Gruyter (2011). [Google Scholar]
- K. Wehrheim, Uhlenbeck compactness. European Mathematical Society (2004). [CrossRef] [Google Scholar]
- R.A. Adams and J.J. Fournier, Sobolev Spaces. Elsevier (2003). [Google Scholar]
- A. Convent and J. Van Schaftingen, Higher order intrinsic weak differentiability and Sobolev spaces between manifolds. Adv. Calc. Var. 12 (2019) 303–332. [CrossRef] [MathSciNet] [Google Scholar]
- A. Convent and J. Van Schaftingen, Intrinsic colocal weak derivatives and Sobolev spaces between manifolds. Ann. Sc. Norm. Super. Pisa Cl. Sci. 16 (2016) 97–128. [MathSciNet] [Google Scholar]
- H. Hardering, Intrinsic discretization error bounds for geodesic finite elements. Doctoral dissertation, Freie Universitat Berlin (2015). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.