Open Access
Issue |
ESAIM: COCV
Volume 31, 2025
|
|
---|---|---|
Article Number | 5 | |
Number of page(s) | 13 | |
DOI | https://doi.org/10.1051/cocv/2024088 | |
Published online | 06 January 2025 |
- W. Stekloff, Sur les problèmes fondamentaux de la physique mathématique (suite et fin). Ann. Sci. École Norm. Sup. 19 (1902) 455–490. [CrossRef] [MathSciNet] [Google Scholar]
- R. Weinstock, Inequalities for a classical eigenvalue problem. J. Rational Mech. Anal. 3 (1954) 745–753. [MathSciNet] [Google Scholar]
- A. Fraser and R. Schoen, The first Steklov eigenvalue, conformal geometry, and minimal surfaces. Adv. Math. 226 (2011) 4011–4030. [CrossRef] [MathSciNet] [Google Scholar]
- D. Bucur, V. Ferone, C. Nitsch and C. Trombetti, Weinstock inequality in higher dimensions. J. Differ. Geom. 118 (2021) 1–21. [CrossRef] [Google Scholar]
- A. Girouard and I. Polterovich, Spectral geometry of the Steklov problem (survey article). J. Spectr. Theory 7 (2017) 321–359. [CrossRef] [MathSciNet] [Google Scholar]
- A. Fraser and R. Schoen, Shape optimization for the Steklov problem in higher dimensions. Adv. Math. 348 (2019) 146–162. [CrossRef] [MathSciNet] [Google Scholar]
- F. Brock, An isoperimetric inequality for eigenvalues of the Stekloff problem. Z. Angew. Math. Mech. 81 (2001) 69–71. [CrossRef] [MathSciNet] [Google Scholar]
- L. Brasco, G. De Philippis and B. Ruffini, Spectral optimization for the Stekloff–Laplacian: the stability issue. J. Funct. Anal. 262 (2012) 4675–4710. [CrossRef] [MathSciNet] [Google Scholar]
- I. Chavel, Eigenvalues in Riemannian geometry, Vol. 115 of Pure and Applied Mathematics. Academic Press, Inc., Orlando, FL (1984). [Google Scholar]
- M.S. Ashbaugh and R.D. Benguria, Sharp upper bound to the first nonzero Neumann eigenvalue for bounded domains in spaces of constant curvature. J. London Math. Soc. 52 (1995) 402–416. [CrossRef] [MathSciNet] [Google Scholar]
- J.F. Escobar, An isoperimetric inequality and the first Steklov eigenvalue. J. Funct. Anal. 165 (1999) 101–116. [CrossRef] [MathSciNet] [Google Scholar]
- Binoy and G. Santhanam, Sharp upperbound and a comparison theorem for the first nonzero Steklov eigenvalue. J. Ramanujan Math. Soc. 29 (2014) 133–154. [MathSciNet] [Google Scholar]
- P. Castillon and B. Ruffini, A spectral characterization of geodesic balls in non-compact rank one symmetric spaces. Ann. Sc. Norm. Super. Pisa Cl. Sci. 19 (2019) 1359–1388. [MathSciNet] [Google Scholar]
- X. Li, K. Wang and H. Wu, On the second Robin eigenvalue of the Laplacian. Calc. Var. Part. Differ. Equ. 62 (2023) Paper No. 256, 17. [CrossRef] [Google Scholar]
- A. Fraser and R. Schoen, Sharp eigenvalue bounds and minimal surfaces in the ball. Invent. Math. 203 (2016) 823–890. [CrossRef] [MathSciNet] [Google Scholar]
- J.F. Escobar, The geometry of the first non-zero Stekloff eigenvalue. J. Funct. Anal. 150 (1997) 544–556. [CrossRef] [MathSciNet] [Google Scholar]
- C. Xia and C. Xiong, Escobar’s Conjecture on a Sharp Lower Bound for the First Nonzero Steklov Eigenvalue. Peking Math. J. 7 (2024) 759–778. [CrossRef] [MathSciNet] [Google Scholar]
- Q. Wang and C. Xia, Sharp bounds for the first non-zero Stekloff eigenvalues. J. Funct. Anal. 257 (2009) 2635–2644. [CrossRef] [MathSciNet] [Google Scholar]
- M. Karpukhin, Bounds between Laplace and Steklov eigenvalues on nonnegatively curved manifolds. Electron. Res. Announc. Math. Sci. 24 (2017) 100–109. [MathSciNet] [Google Scholar]
- C. Xiong, Comparison of Steklov eigenvalues on a domain and Laplacian eigenvalues on its boundary in Riemannian manifolds. J. Funct. Anal. 275 (2018) 3245–3258. [CrossRef] [MathSciNet] [Google Scholar]
- J.F. Escobar, A comparison theorem for the first non-zero Steklov eigenvalue. J. Funct. Anal. 178 (2000) 143–155. [CrossRef] [MathSciNet] [Google Scholar]
- N. Edelen, The PPW conjecture in curved spaces. J. Funct. Anal. 272 (2017) 849–865. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.