Open Access
Issue |
ESAIM: COCV
Volume 31, 2025
|
|
---|---|---|
Article Number | 4 | |
Number of page(s) | 20 | |
DOI | https://doi.org/10.1051/cocv/2024086 | |
Published online | 06 January 2025 |
- W. Liu, Existence and uniqueness of solutions to nonlinear evolution equations with locally monotone operators. Nonlinear Anal. 74 (2011) 7543–7561. [CrossRef] [MathSciNet] [Google Scholar]
- W. Liu and M. Röckner, SPDE in Hilbert space with locally monotone coefficients. J. Funct. Anal. 259 (2010) 2902–2922. [CrossRef] [MathSciNet] [Google Scholar]
- E.P. Avgerinos and N.S. Papageorgiou, Viable solutions for evolution inclusions. Yokohama Math. J. 37 (1989) 101–108. [Google Scholar]
- S. Hu and N.S. Papageorgiou, Handbook of Multivalued Analysis. Vol. II: Applications, Mathematics and its Applications, Vol. 500. Kluwer Academic Publishers, Dordrecht (2000). [Google Scholar]
- N.S. Papageorgiou, A viability result for nonlinear time dependent evolution inclusions. Yokohama Math. J. 40 (1992) 73–86. [MathSciNet] [Google Scholar]
- S.Z. Shi, Nagumo type condition for partial differential inclusions. Nonlinear Anal. 12 (1988) 951–967. [CrossRef] [MathSciNet] [Google Scholar]
- O. Cârjă, M. Necula and I.I. Vrabie, Viability, Invariance and Applications. North-Holland Mathematics Studies, Vol. 207. Elsevier Science B.V., Amsterdam (2007). [Google Scholar]
- O. Cârjă, M. Necula and I.I. Vrabie, Necessary and sufficient conditions for viability for semilinear differential inclusions. Trans. Amer. Math. Soc. 361 (2009) 343–390. [Google Scholar]
- E. Bayraktar and C. Keller, Path-dependent Hamilton–Jacobi equations in infinite dimensions. J. Funct. Anal. 275 (2018) 2096–2161. [CrossRef] [MathSciNet] [Google Scholar]
- H. Frankowska, Lower semicontinuous solutions of Hamilton–Jacobi–Bellman equations. SIAM J. Control Optim. 31 (1993) 257–272. MR 1200233 [CrossRef] [MathSciNet] [Google Scholar]
- O. Carja, The minimum time function for semilinear evolutions. SIAM J. Control Optim. 50 (2012) 1265–1282. [CrossRef] [MathSciNet] [Google Scholar]
- E. Zeidler, Nonlinear Functional Analysis and its Applications. II/B. Springer-Verlag, New York (1990). [Google Scholar]
- C. Keller, Mean viability theorems and second-order Hamilton–Jacobi equations. SIAM J. Control Optim. 62 (2024) 1615–1642. [CrossRef] [MathSciNet] [Google Scholar]
- D. Goreac, Viability of stochastic semi-linear control systems via the quasi-tangency condition. IMA J. Math. Control Inform. 28 (2011) 391–415. [CrossRef] [MathSciNet] [Google Scholar]
- M.I. Gomoyunov and A.R. Plaksin, Equivalence of minimax and viscosity solutions of path-dependent Hamilton–Jacobi equations. J. Funct. Anal. 285 (2023) Paper No. 110155, 41. [CrossRef] [Google Scholar]
- N.Yu. Lukoyanov, Functional Hamilton-Jacobi type equations in ci-derivatives for systems with distributed delays. Nonlinear Funct. Anal. Appl. 8 (2003) 365–397. [MathSciNet] [Google Scholar]
- M.I. Gomoyunov, N.Yu. Lukoyanov and A.R. Plaksin, Path-dependent Hamilton–Jacobi equations: the minimax solutions revised. Appl. Math. Optim. 84 (2021) S1087–S1117. [CrossRef] [MathSciNet] [Google Scholar]
- N.Yu. Lukoyanov, Differential inequalities for a nonsmooth value functional in control systems with an aftereffect. Proc. Steklov Inst. Math. (2006) S103–S114. [CrossRef] [Google Scholar]
- J.-P. Aubin and H. Frankowska, Set-valued Analysis, Modern Birkhäuser Classics. Birkhauser Boston, Inc., Boston, MA (2009), Reprint of the 1990 edition. [CrossRef] [Google Scholar]
- E. Bayraktar and C. Keller, Path-dependent Hamilton–Jacobi equations with super-quadratic growth in the gradient and the vanishing viscosity method. SIAM J. Control Optim. 60 (2022) 1690–1711. [CrossRef] [MathSciNet] [Google Scholar]
- M. Bardi and I. Capuzzo-Dolcetta, Optimal control and viscosity solutions of Hamilton–Jacobi–Bellman Equations. Systems & Control: Foundations & Applications. Birkhäuser Boston, Inc., Boston, MA (1997), With appendices by M. Falcone and P. Soravia. [Google Scholar]
- E. Zeidler, Nonlinear Functional Analysis and its Applications. II/A. Springer-Verlag, New York (1990), Linear monotone operators, Translated from the German by the author and Leo F. Boron. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.