Open Access
Issue |
ESAIM: COCV
Volume 31, 2025
|
|
---|---|---|
Article Number | 45 | |
Number of page(s) | 25 | |
DOI | https://doi.org/10.1051/cocv/2025027 | |
Published online | 04 June 2025 |
- C. Raposo, L. Correia, J. Ribeiro and A. Cunha, Suspension bridge with internal damping. Acta Mechanica 235 (2024) 203-214. [CrossRef] [MathSciNet] [Google Scholar]
- X. Guo, J. Liu, L. Dai, Q. Liu, D. Fang, A. Wei and J. Wang, Friction-wear failure mechanism of tubing strings used in high-pressure, high-temperature and high-yield gas wells. Wear 468 (2021) art no. 203576. [CrossRef] [Google Scholar]
- X. Liu, L. Liu, M. Cai and B. Yan, Free vibration of transmission lines with multiple insulator strings using refined models. Appl. Math. Model. 67 (2019) 252-282. [CrossRef] [MathSciNet] [Google Scholar]
- J. Lagnese, G. Leugering and E.J.P.G. Schmidt, Modeling, Analysis of Dynamic Elastic Multi-link Structures. Birkhäuser, Boston (1994). [CrossRef] [Google Scholar]
- E.J. Davison, The Robust control of a servomechanism problem for linear time-invariant multivariable systems. IEEE Trans. Automatic Control 21 (1976) 25-34. [CrossRef] [MathSciNet] [Google Scholar]
- B.A. Francis and W.M. Wonham, The internal model principle of control Theory. Automatica 12 (1976) 457-465. [CrossRef] [MathSciNet] [Google Scholar]
- R. Rebarber and G. Weiss, Internal model based tracking and disturbance rejection for stable well-posed system. Automatica 39 (2003) 1555-1569. [CrossRef] [MathSciNet] [Google Scholar]
- L. Paunonen and S. Pohjolainen, Internal model theory for distributed parameter systems. SIAM J. Control Optim. 48 (2010) 4753-4775. [CrossRef] [MathSciNet] [Google Scholar]
- L. Paunonen, Robust controllers for regular linear systems with infinite dimensional exosystems. SIAM J. Control Optim. 55 (2017) 1567-1597. [CrossRef] [MathSciNet] [Google Scholar]
- J.J. Gu, J.M. Wang and Y.P. Guo, Output regulation of anti-stable coupled wave equations via the backstepping technique. IET Control Theory Appl. 12 (2018) 431-445. [CrossRef] [MathSciNet] [Google Scholar]
- H. Feng, B.Z. Guo and X.H. Wu, Trajectory planning approach to output tracking for a 1-D wave equation. IEEE Trans. Automatic Control 65 (2020) 1841-1851. [CrossRef] [MathSciNet] [Google Scholar]
- W. Guo, H.C. Zhou and M. Krstic, Adaptive error feedback regulation problem for 1D wave equation. Int. J. Robust Nonlinear Control 28 (2018) 4309-4329. [CrossRef] [Google Scholar]
- B.Z. Guo and T.T. Meng, Robust output regulation of 1-d wave equation. IFAC J. Syst. Control 16 (2021) art no. 100140. [CrossRef] [Google Scholar]
- T.T. Meng and B.Z. Guo, Observer-based robust control for N-coupled wave equations. Int. J. Robust Nonlinear Control 33 (2023) 8548-8569. [CrossRef] [Google Scholar]
- B.Z. Guo and R.X. Zhao, Output regulation for a heat equation with unkonwn exosystem. Automatica 138 (2022) art no. 11015. [Google Scholar]
- X.H. Wu and J.M. Wang, Adaptive output tracking for 1-D wave equations subject to unknown harmonic disturbances. IEEE Trans. Automatic Control 69 (2024) 2689-2696. [CrossRef] [MathSciNet] [Google Scholar]
- J. Wang, S.X. Tang, Y.J. Pi and M. Krstic, Exponential regulation of the anti-collocatedly disturbed cage in a wave PDE-modeled ascending cable elevator. Automatica 95 (2018) 122-136. [CrossRef] [Google Scholar]
- R.X. Zhao and B.Z. Guo, Output regulation for a wave equation with unknown exosystem. IEEE Trans. Automatic Control 69 (2024) 3066-3079. [CrossRef] [MathSciNet] [Google Scholar]
- B.Z. Guo and R.X. Zhao, Output regulation for Euler-Bernoulli beam with unknown exosystem using adaptive internal model. SIAM J. Control Optim. 61 (2023) 2088-2113. [CrossRef] [MathSciNet] [Google Scholar]
- G. Chen, M. Coleman and H.H. West, Pointwise stabilization in the middle of the span for second order systems, nonuniform and uniform exponential decay of solutions. SIAM J. Appl. Math. 47 (1987) 751-780. [CrossRef] [MathSciNet] [Google Scholar]
- B.Z. Guo and F.F. Jin, Arbitrary decay rate for two connected strings with joint anti-damping by boundary output feedback. Automatica 46 (2010) 1203-1209. [CrossRef] [MathSciNet] [Google Scholar]
- K.S. Liu, Energy decay problems in the design of a point stabilizer for coupled string vibrating systems. SIAM J. Control Optim. 26 (1988) 1348-1356. [CrossRef] [MathSciNet] [Google Scholar]
- M.L.J. Hautus, Controllability and observability conditions for linear autonomous systems. Indagationes Math. 31 (1969) 443-448. [Google Scholar]
- C.T. Chen, Linear System Theory and Design, 3rd edn. Oxford University Press, New York (1999). [Google Scholar]
- R. Marino and G. Santosuosso, Regulation of linear systems with unknown exosystems of uncertain order. IEEE Trans. Automatic Control 52 (2007) 352-359. [CrossRef] [MathSciNet] [Google Scholar]
- R. Marino and P. Tomei, Disturbance cancellation for linear systems by adaptive internal model. Automatica 49 (2013) 1494-1500. [CrossRef] [MathSciNet] [Google Scholar]
- H.C. Zhou and G. Weiss, Output feedback exponential stabilization for one-dimensional unstable wave equations with boundary control matched disturbance. SIAM J. Control Optim. 56 (2018) 4098-4129. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.