Open Access
Issue |
ESAIM: COCV
Volume 31, 2025
|
|
---|---|---|
Article Number | 46 | |
Number of page(s) | 58 | |
DOI | https://doi.org/10.1051/cocv/2025033 | |
Published online | 04 June 2025 |
- J-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol. I. Springer Berlin Heidelberg (1972). [Google Scholar]
- J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol. II. Springer Berlin Heidelberg (1972). [Google Scholar]
- J-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol. III. Springer Berlin Heidelberg (1973). [CrossRef] [Google Scholar]
- C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim. 30 (1992) 1024–1065. [Google Scholar]
- N. Burq and P. Gerard, A necessary and sufficient condition for the exact controllability of the wave equation. C. R. Acad. Sci., Paris, Ser. I, Math. 325 (1997) 749–752. [CrossRef] [MathSciNet] [Google Scholar]
- Y. Cui, C. Laurent and Z. Wang, On the observability inequality of coupled wave equations: the case without boundary. ESAIM: COCV 26 (2020) 14. [CrossRef] [EDP Sciences] [Google Scholar]
- B. Dehman, J. Le Rousseau and M. Leautaud, Controllability of two coupled wave equations on a compact manifold. Arch. Rational Mech. Anal. 211 (2014) 113–187. [CrossRef] [MathSciNet] [Google Scholar]
- S. Ervedoza and E. Zuazua, A systematic method for building smooth controls for smooth data. Discrete Continuous Dyn. Syst. Ser. B 4 (2010) 11. [Google Scholar]
- B. Dehman and G. Lebeau, Analysis of the hum control operator and exact controllability for semilinear waves in uniform time. SIAM J. Control Optim. 48 (2008) 521–550. [Google Scholar]
- J. Bergh and J. Löfström, Interpolation Spaces: An Introduction. Springer Berlin Heidelberg (1976). [Google Scholar]
- I. Lasiecka, J-L. Lions and R. Triggiani, Non homogeneous boundary value problems for second order hyperbolic operators. J. Math. Pures Appl. 65 (1986) 149–192. [MathSciNet] [Google Scholar]
- L. Hörmander, The Analysis of Linear Partial Differential Operators I. Springer Berlin Heidelberg (2003). [CrossRef] [Google Scholar]
- J. Le Rousseau, G. Lebeau and L. Robbiano, Elliptic Carleman Estimates and Applications to Stabilization and Controllability. Vol. I of Dirichlet Boundary Conditions on Euclidean Space. Springer International Publishing (2022). [Google Scholar]
- L. Hörmander, The analysis of Linear Partial Differential Operators III. Classics in Mathematics. Springer, Berlin (2007). Pseudo-differential operators, Reprint of the 1994 edition. [CrossRef] [Google Scholar]
- I.I. Vrabie, C0-semigroups and Applications. Vol. 191 of North-Holland Math. Stud. North-Holland, Amsterdam (2003). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.