Open Access
Issue |
ESAIM: COCV
Volume 31, 2025
|
|
---|---|---|
Article Number | 22 | |
Number of page(s) | 42 | |
DOI | https://doi.org/10.1051/cocv/2025013 | |
Published online | 20 March 2025 |
- A.I. Lourie and V.N. Postnikov, Concerning the theory of stability of regulating systems. Appl. Math. Mech. [Akad. Nauk SSSR. Prikl. Mat. Mech.] 8 (1944) 246–248. [Google Scholar]
- M.A. Aizerman, On a problem concerning the stability “in the large” of dynamical systems. Usp. Mat. Nauk 4 (1949) 187–188. [Google Scholar]
- R. Fitts, Two counterexamples to Aizerman’s conjecture. IEEE Trans. Automat. Cont. 11 (1966) 553–556. [CrossRef] [Google Scholar]
- R.E. Kalman, Physical and mathematical mechanisms of instability in nonlinear automatic control systems. Trans. ASME 79 (1957) 553–563. [Google Scholar]
- I. Boiko, N. Kuznetsov, R. Mokaev, T. Mokaev, M. Yuldashev and R. Yuldashev, On counter-examples to Aizerman and Kalman conjectures. Int. J. Control 95 (2020) 906–913. [Google Scholar]
- G. Leonov, V. Bragin and N. Kuznetsov, Algorithm for constructing counterexamples to the Kalman problem. Dokl. Math. 82 (2010) 540–542. [CrossRef] [Google Scholar]
- P. Seiler and J. Carrasco, Construction of periodic counterexamples to the discrete-time Kalman conjecture. IEEE Control System Lett. 5 (2020) 1291–1296. [Google Scholar]
- W.M. Haddad and V. Chellaboina, Nonlinear Dynamical Systems and Control. Princeton University Press, Princeton, NJ (2008). [Google Scholar]
- D. Hinrichsen and A.J. Pritchard, Mathematical systems theory. I. Vol. 48 of Texts in Applied Mathematics. Springer, Berlin (2005). [Google Scholar]
- H.K. Khalil, Nonlinear Systems. 3rd edn. Prentice Hall, New Jersey (2002). [Google Scholar]
- C.A. Desoer and M. Vidyasagar, Feedback Systems: Input–Output Properties. Academic Press [Harcourt Brace Jovanovich Publishers], New York (1975). [Google Scholar]
- M. Vidyasagar, Nonlinear systems analysis. Vol. 42 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2002). Reprint of the second (1993) edition. [Google Scholar]
- M. Liberzon, Essays on the absolute stability theory. Autom. Remote Control 67 (2006) 1610–1644. [MathSciNet] [Google Scholar]
- W.M. Haddad and D.S. Bernstein, Explicit construction of quadratic Lyapunov functions for the small gain, positivity, circle, and Popov theorems and their application to robust stability. Part I: continuous-time theory. Int. J. Robust Nonlinear Control 3 (1993) 313–339. [Google Scholar]
- G. Zames, On the input-output stability of time-varying nonlinear feedback systems part one: conditions derived using concepts of loop gain, conicity, and positivity. IEEE Trans. Automat. Cont. 11 (1966) 228–238. [CrossRef] [Google Scholar]
- E.D. Sontag, Smooth stabilization implies coprime factorization. IEEE Trans. Automat. Cont. 34 (1989) 435–443. [CrossRef] [Google Scholar]
- Z.-P. Jiang, A.R. Teel and L. Praly, Small-gain theorem for iss systems and applications. Math. Control Signals Syst. 7 (1994) 95–120. [Google Scholar]
- E.D. Sontag and Y. Wang, On characterizations of the input-to-state stability property. Syst. Control Lett. 24 (1995) 351–359. [Google Scholar]
- E.D. Sontag and Y. Wang, New characterizations of input-to-state stability. IEEE Trans. Automat. Cont. 41 (1996) 1283–1294. [CrossRef] [Google Scholar]
- D. Angeli, E.D. Sontag and Y. Wang, A characterization of integral input-to-state stability. IEEE Trans. Automat. Cont. 45 (2000) 1082–1097. [CrossRef] [Google Scholar]
- E.D. Sontag, Comments on integral variants of ISS. Syst. Control Lett. 34 (1998) 93–100. [CrossRef] [Google Scholar]
- A. Chaillet, D. Angeli and H. Ito, Combining iISS and ISS with respect to small inputs: the strong iISS property. IEEE Trans. Automat. Cont. 59 (2014) 2518–2524. [CrossRef] [Google Scholar]
- C. Guiver and H. Logemann, The exponential input-to-state stability property: characterisations and feedback connections. Math. Control Signals Syst. 35 (2023) 375–398. [Google Scholar]
- D. Efimov and A. Polyakov, On converse Lyapunov theorem for fixed-time input-to-state stability. SIAM J. Control Optim. 62 (2024) 118–134. [Google Scholar]
- Y. Hong, Z.-P. Jiang and G. Feng, Finite-time input-to-state stability and applications to finite-time control design. SIAM J. Control Optim. 48 (2010) 4395–4418. [Google Scholar]
- Z.-P. Jiang and Y. Wang, Input-to-state stability for discrete-time nonlinear systems. Automatica 37 (2001) 857–869. [Google Scholar]
- W. Xie, C. Wen and Z. Li, Input-to-state stabilization of switched nonlinear systems. IEEE Trans. Automat. Control 46 (2001) 1111–1116. [CrossRef] [MathSciNet] [Google Scholar]
- A. Mironchenko and C. Prieur, Input-to-state stability of infinite-dimensional systems: recent results and open questions. SIAM Rev. 62 (2020) 529–614. [Google Scholar]
- A. Mironchenko and C. Prieur, Input-to-state stability of infinite-dimensional systems: foundations and present-day developments. arXiv preprint arXiv:2406.02071 (2024). [Google Scholar]
- S. Dashkovskiy, D.V. Efimov and E.D. Sontag, Input to state stability and allied system properties. Autom. Remote Control 72 (2011) 1579–1614. [MathSciNet] [Google Scholar]
- E.D. Sontag, Input to state stability: basic concepts and results, in Nonlinear and Optimal Control Theory. Springer, Berlin (2008) 163–220. [Google Scholar]
- A. Mironchenko, Input-to-state Stability – Theory and Applications. Communications and Control Engineering Series. Springer, Cham (2023). [CrossRef] [Google Scholar]
- I. Karafyllis and Z.-P. Jiang, Stability and Stabilization of Nonlinear systems. Communications and Control Engineering. Springer, London (2011). [Google Scholar]
- R. Drummond, C. Guiver and M.C. Turner, Exponential input-to-state stability for Lur’e systems via integral quadratic constraints and Zames-Falb multipliers. IMA J. Math. Control Inform. 41 (2024) 1–17. [CrossRef] [MathSciNet] [Google Scholar]
- M. Arcak and A. Teel, Input-to-state stability for a class of Lurie systems. Automatica 38 (2002) 1945–1949. [Google Scholar]
- C. Guiver and H. Logemann, A circle criterion for strong integral input-to-state stability. Automatica J. IFAC 111 (2020) 108641. [MathSciNet] [Google Scholar]
- B. Jayawardhana, H. Logemann and E.P. Ryan, Input-to-state stability of differential inclusions with applications to hysteretic and quantized feedback systems. SIAM J. Cont. Optim. 48 (2009) 1031–1054. [Google Scholar]
- B. Jayawardhana, H. Logemann and E.P. Ryan, The circle criterion and input-to-state stability. IEEE Control Syst. Mag. 31 (2011) 32–67. [CrossRef] [MathSciNet] [Google Scholar]
- D. Angeli, A Lyapunov approach to incremental stability properties. IEEE Trans. Automat. Cont. 47 (2002) 410–421. [CrossRef] [Google Scholar]
- D. Angeli, Further results on incremental input-to-state stability. IEEE Trans. Automat. Control 54 (2009) 1386–1391. [CrossRef] [MathSciNet] [Google Scholar]
- R. Sepulchre, T. Chaffey and F. Forni, On the incremental form of dissipativity. IFAC-PapersOnLine 55 (2022) 290–294. [CrossRef] [Google Scholar]
- Z. Aminzare and E.D. Sontagy, Contraction methods for nonlinear systems: a brief introduction and some open problems, in 53rd IEEE Conference on Decision and Control. IEEE (2014) 3835–3847. [Google Scholar]
- W. Lohmiller and J.-J.E. Slotine, On contraction analysis for non-linear systems. Automatica J. IFAC 34 (1998) 683–696. [MathSciNet] [Google Scholar]
- H. Tsukamoto, S.-J. Chung and J.-J.E. Slotine. Contraction theory for nonlinear stability analysis and learning-based control: a tutorial overview. Annu. Rev. Control 52 (2021) 135–169. [Google Scholar]
- F. Bullo, Contraction Theory for Dynamical Systems. 1.1st edn. Kindle Direct Publishing (2023). [Google Scholar]
- B.S. Rüffer, N. van de Wouw and M. Mueller, Convergent system vs. incremental stability. Syst. Control Lett. 62 (2013) 277–285. [Google Scholar]
- J. Jouffroy and T.I. Fossen, A tutorial on incremental stability analysis using contraction theory. Model. Ident. Control 31 (2010) 93–106. [Google Scholar]
- T. Chaffey and R. Sepulchre, Monotone one-port circuits. IEEE Trans. Automat. Control 69 (2023) 783–796. [Google Scholar]
- F. Forni and R. Sepulchre, Differential dissipativity theory for dominance analysis. IEEE Trans. Automat. Cont. 64 (2018) 2340–2351. [Google Scholar]
- R. Ofir, A. Ovseevich and M. Margaliot, Contraction and k-contraction in Lurie systems with applications to networked systems. Automatica 159 (2024) 111341. [Google Scholar]
- M.E. Gilmore, C. Guiver and H. Logemann, Incremental input-to-state stability for Lur’e systems and asymptotic behaviour in the presence of Stepanov almost periodic forcing. J. Differ. Equ. 300 (2021) 692–733. [Google Scholar]
- D. Jordan and P. Smith, Nonlinear Ordinary Differential Equations: An Introduction for Scientists and Engineers. 4th edn. Oxford University Press, Oxford (2007). [Google Scholar]
- V. Centorrino, A. Gokhale, A. Davydov, G. Russo and F. Bullo, Euclidean contractivity of neural networks with symmetric weights. IEEE Control System Lett. 7 (2023) 1724–1729. [CrossRef] [Google Scholar]
- M. Revay, R. Wang and I.R. Manchester, Lipschitz bounded equilibrium networks. arXiv preprint arXiv:2010.01732 (2020). [Google Scholar]
- M. Giaccagli, D. Astolfi and V. Andrieu, Further results on incremental input-to-state stability based on contraction-metric analysis, in 62nd IEEE Conference on Decision and Control (CDC 2023) (2023). [Google Scholar]
- A.R. Teel and L. Praly, A smooth Lyapunov function from a class-estimate involving two positive semidefinite functions. ESAIM Control Optim. Calc. Var. 5 (2000) 313–367. [MathSciNet] [Google Scholar]
- M.E. Gilmore, C. Guiver and H. Logemann, Semi-global incremental input-to-state stability of discrete-time Lur’e systems. Syst. Control Lett. 136 (2020) 104593. [Google Scholar]
- L. Amerio and G. Prouse, Almost-periodic Functions and Functional Equations. Van Nostrand Reinhold Co., New York–Toronto–Melbourne (1971). [Google Scholar]
- R.J. Gilmore and M.B. Steer, Nonlinear circuit analysis using the method of harmonic balance – a review of the art. Part I. Introductory concepts. Int. J. Microw. Millim.-Wave Comput.-Aided Eng. 1 (1991) 22–37. [Google Scholar]
- G. Bacelli and R.G. Coe, Comments on control of wave energy converters. IEEE Trans. Control Syst. Technol. 29 (2020) 478–481. [Google Scholar]
- C. Windt, N. Faedo, M. Penalba, F. Dias and J.V. Ringwood, Reactive control of wave energy devices–the modelling paradox. Appl. Ocean Res. 109 (2021) 102574. [Google Scholar]
- A. Mérigaud and J.V. Ringwood, Free-surface time-series generation for wave energy applications. IEEE J. Ocean. Eng. 43 (2017) 19–35. [Google Scholar]
- C. Guiver, A method for constrained energy-maximising control of heaving wave-energy converters via a nonlinear frequency response, in 2024 IEEE Conference on Control Technology and Applications (CCTA). IEEE (2024) 590–597. [Google Scholar]
- M.E. Gilmore, C. Guiver and H. Logemann, Infinite-dimensional Lur’e systems with almost periodic forcing. Math. Control Signals Syst. 32 (2020) 327–360. [Google Scholar]
- F. Fusco and J.V. Ringwood, Robust control of wave energy converters, in 2014 IEEE Conference on Control Applications (CCA). IEEE (2014) 292–297. [Google Scholar]
- F.H. Clarke, Y.S. Ledyaev and R.J. Stern, Asymptotic stability and smooth Lyapunov functions. J. Differ. Equ. 149 (1998) 69–114. [Google Scholar]
- C.M. Kellett, A compendium of comparison function results. Math. Control Signals Syst. 26 (2014) 339–374. [CrossRef] [Google Scholar]
- C.D. Aliprantis and K.C. Border, Infinite Dimensional Analysis. 3rd edn. Springer, Berlin (2006). [Google Scholar]
- K. Deimling, Multivalued differential equations. Vol. 1 of De Gruyter Series in Nonlinear Analysis and Applications. Walter de Gruyter & Co., Berlin (1992). [Google Scholar]
- H. Logemann and E.P. Ryan, Ordinary Differential Equations. Springer Undergraduate Mathematics Series. Springer, London (2014). [CrossRef] [Google Scholar]
- C. Guiver, H. Logemann and M.R. Opmeer, Transfer functions of infinite-dimensional systems: positive realness and stabilization. Math. Control Signals Syst. 29 (2017) 1–61. [Google Scholar]
- K. Zhou, J. Doyle and K. Glover, Robust and optimal control. Prentice Hall Englewood Cliffs, New Jersey (1996). [Google Scholar]
- M. Green and D.J.N. Limebeer, Linear Robust Control. Prentice-Hall, New Jersey (1995). [Google Scholar]
- E. Sarkans and H. Logemann, Input-to-state stability of Lur’e systems. Math. Control Signals Syst. 27 (2015) 439–465. [Google Scholar]
- M.E. Gilmore, Stability and convergence properties of forced Lur’e systems. PhD thesis, University of Bath, UK (2020). [Google Scholar]
- C. Guiver, H. Logemann and B. Rüffer, Small-gain stability theorems for positive Lur’e inclusions. Positivity 23 (2019) 249–289. [MathSciNet] [Google Scholar]
- B. Jayawardhana, E.P. Ryan and A.R. Teel, Bounded-energy-input convergent-state property of dissipative nonlinear systems: an iISS approach. IEEE Trans. Automat. Control 55 (2010) 159–164. [CrossRef] [MathSciNet] [Google Scholar]
- W.M. Haddad and V. Kapila, Absolute stability criteria for multiple slope-restricted monotonic nonlinearities. IEEE Trans. Automat. Control 40 (1995) 361–365. [CrossRef] [MathSciNet] [Google Scholar]
- M.C. Turner and R. Drummond, Analysis of systems with slope restricted nonlinearities using externally positive Zames–Falb multipliers. IEEE Trans. Automat. Control 65 (2019) 1660–1667. [Google Scholar]
- K. Deimling, Nonlinear Functional Analysis. Dover (2010). [Google Scholar]
- J. Morison, J.W. Johnson and S.A. Schaaf, The force exerted by surface waves on piles. J. Petrol. Tech. 2 (1950) 149–154. [CrossRef] [Google Scholar]
- A. Bellow and V. Losert, The weighted pointwise ergodic theorem and the individual ergodic theorem along subsequences. Trans. Amer. Math. Soc. 288 (1985) 307–345. [Google Scholar]
- H. Bohr, Almost Periodic Functions. Chelsea Publishing Co., New York (1947). [Google Scholar]
- C. Corduneanu, Almost Periodic Oscillations and Waves. Springer, New York (2009). [Google Scholar]
- C. Corduneanu, Almost Periodic Functions. 2nd edn. Chelsea Publishing Co., New York (1989). [Google Scholar]
- W. Cummins, The impulse response function and ship motions. Schiffstechnik 9 (1962) 101–109. [Google Scholar]
- WAMIT, Inc. WAMIT v7.0 manual (2013). [Google Scholar]
- Y. Pena-Sanchez, N. Faedo, M. Penalba, G. Giuseppe, A. Mérigaud, C. Windt, D.G. Violini, W. LiGuo and J.V. Ringwood, Finite-order hydrodynamic Approximation by Moment-Matching (FOAMM) toolbox for wave energy applications, in European Tidal and Wave Energy Conference Proceedings, vol. 2019. EWTEC (2019). [Google Scholar]
- M. Penalba, T. Kelly and J.V. Ringwood, Using NEMOH for modelling wave energy converters: a comparative study with WAMIT, in 12th European Wave and Tidal Energy Conference (EWTEC) (2017). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.