Open Access
Issue
ESAIM: COCV
Volume 31, 2025
Article Number 23
Number of page(s) 26
DOI https://doi.org/10.1051/cocv/2025012
Published online 20 March 2025
  1. K.E. Brenan, S.L. Campbell and L.R. Petzold, Numerical Solution of Initial-value Problems in Differential Algebraic Equations, 2nd edn. SIAM Publications, Philadelphia, PA (1996). [Google Scholar]
  2. N.H. Du, V.H. Linh, V. Mehrmann and D.D. Thuan, Stability and robust stability of linear time-invariant delay differential-algebraic equations. SIAM J. Matr. Anal. Appl. 34 (2013) 1631–1654. [Google Scholar]
  3. P. Kunkel and V. Mehrmann, Differential-Algebraic Equations – Analysis and Numerical Solution. EMS Publishing House, Zürich, Switzerland (2006). [Google Scholar]
  4. L. Lang, W. Chen, B.R. Bakshi, P.K. Goel and S. Ungarala, Bayesian estimation via sequential Monte Carlo sampling: constrained dynamic systems. Automatica 43 (2007) 1615–1622. [Google Scholar]
  5. D.G. Luenberger, Dynamic equations in descriptor form. IEEE Trans. Automat. Control AC-22 (1977) 312–321. [CrossRef] [Google Scholar]
  6. V.H. Linh and H. Phi, Index reduction for second order singular systems of difference equations. Lin. Alg. Appl. 608 (2021) 107–132. [Google Scholar]
  7. V.H. Linh, N.T. Thanh Nga and D.D. Thuan, Exponential stability and robust stability for linear time-varying singular systems of second order difference equations. SIAM J. Matr. Anal. Appl. 39 (2018) 204–233. [Google Scholar]
  8. V. Mehrmann and D.D. Thuan, Stability analysis of implicit difference equations under restricted perturbations. SIAM J. Matr. Anal. Appl. 36 (2015) 178–202. [Google Scholar]
  9. T. Berger and T. Reis, Controllability of linear differential-algebraic systems – a survey, in Surveys in Differential- Algebraic Equations I, Differential-Algebraic Equations Forum, edited by A. Ilchmann and T. Reis. Springer-Verlag (2013) 1–61. [Google Scholar]
  10. L. Dai, Singular Control Systems. Springer-Verlag, Berlin, Germany (1989). [Google Scholar]
  11. N.P. Karampetakis and A. Gregoriadou, Reachability and controllability of discrete-time descriptor systems. Int. J. Control 87 (2014) 235–248. [Google Scholar]
  12. P. Losse and V. Mehrmann, Controllability and observability of second order descriptor systems. SIAM J. Cont. Optim. 47(3) (2008) 1351–1379. [Google Scholar]
  13. L. Wunderlich, Numerical treatment of second order differential-algebraic systems. Proc. Appl. Math. Mech. 6 (2006) 775–776. [Google Scholar]
  14. L. Wunderlich, Analysis and numerical solution of structured and switched differential-algebraic systems, Dissertation, Institut für Mathematik, TU Berlin, Berlin, Germany (2008). [Google Scholar]
  15. G.C. Verghese, B.C. Lévy and T. Kailath, A generalized state space for singular systems. IEEE Trans. Automat. Control AC-26 (1981) 811–831. [CrossRef] [MathSciNet] [Google Scholar]
  16. C.E. Langenhop, The Laurent expansion for a nearly singular matrix. Lin. Alg. Appl. 4 (1971) 329–340. [Google Scholar]
  17. F.L. Lewis and B.G. Mertzios, On the analysis of discrete linear time-invariant singular systems. IEEE Trans. Automat. Control 35 (1990) 506–511. [CrossRef] [MathSciNet] [Google Scholar]
  18. D.D. Thuan and N.H. Son, Stochastic implicit difference equations of index-1. J. Diff. Equ. Appl. 11–12 (2020) 1428–1449. [Google Scholar]
  19. G.R. Duan, Analysis and design of descriptor linear systems, in Advances in Mechanics and Mathematics. Springer, New York (2010). [CrossRef] [Google Scholar]
  20. R.W. Brockett, Finite Dimensional Linear Systems. John Wiley and Sons, New York, NY (1970). [Google Scholar]
  21. M. Green and D.J.N. Limebeer, Linear Robust Control. Dover Books on Electrical Engineering. Dover Publications, Inc. (2012). [Google Scholar]
  22. E.D. Sontag, Mathematical Control Theory: Deterministic Finite Dimensional Systems. Texts in Applied Mathematics. Springer New York (2013). [Google Scholar]
  23. K. Zhou, J.C. Doyle and K. Glover, Robust and Optimal Control. Feher/Prentice Hall Digital and, Prentice Hall (1996). [Google Scholar]
  24. G.H. Golub and C.F. Van Loan, Matrix Computations, 3rd edn. The Johns Hopkins University Press, Baltimore, MD (1996). [Google Scholar]
  25. P. Losse, V. Mehrmann, L.K. Poppe and T. Reis, The modified optimal H control problem for descriptor systems. SIAM J. Cont. 47 (2008) 2795–2811. [Google Scholar]
  26. T. Abdelaziz, Eigenstructure assignment by displacement-acceleration feedback for second-order systems. J. Dyn. Syst. Meas. Contr. 138(6) (2016) 064502–064502-7. [Google Scholar]
  27. P. Yu and G. Zhang, Eigenstructure assignment and impulse elimination for singular second-order system via feedback control. IET Control. Theory Appl. 10 (2016) 869–876. [CrossRef] [MathSciNet] [Google Scholar]
  28. P.C. Hughes and R.E. Skelton, Controllability and observability of linear matrix-second-order systems. J. Appl. Mech. 47 (1980) 415–420. [Google Scholar]
  29. P. Rocha and J.C. Willems, Behavioral controllability of delay-differential systems. SIAM J. Control Optim. 35 (1997) 254–264. [Google Scholar]
  30. J.C. Willems, From time series to linear system. Part I. Finite dimensional linear time invariant systems. Automatica 22 (1986) 561–580. [Google Scholar]
  31. J.C. Willems, From time series to linear system—Part II. Exact modelling. Automatica 22 (1986) 675–694. [Google Scholar]
  32. V. Mehrmann and C. Shi, Transformation of high order linear differential-algebraic systems to first order. Numer. Alg. 42 (2006) 281–307. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.