Open Access
| Issue |
ESAIM: COCV
Volume 31, 2025
|
|
|---|---|---|
| Article Number | 70 | |
| Number of page(s) | 39 | |
| DOI | https://doi.org/10.1051/cocv/2025057 | |
| Published online | 19 August 2025 | |
- A. Salmona, V. De Bortoli, J. Delon and A. Desolneux, Can push-forward generative models fit multimodal distributions? in Advances in Neural Information Processing Systems, Vol. 35, edited by S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho and A. Oh. Curran Associates, Inc. (2022) 10766–10779. [Google Scholar]
- D.P. Kingma and M. Welling, Auto-encoding variational Bayes. Stat 1050 (2014) 1. [Google Scholar]
- I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville and Y. Bengio, Generative adversarial nets. Adv. Neural Inform. Process. Syst. 27 (2014) 2672–2680. [Google Scholar]
- D. Rezende and S. Mohamed, Variational inference with normalizing flows, in International Conference on Machine Learning. PMLR (2015) 1530–1538. [Google Scholar]
- Y. Song, J. Sohl-Dickstein, D.P. Kingma, A. Kumar, S. Ermon and B. Poole, Score-based generative modeling through stochastic differential equations. International Conference on Learning Representations (2020). [Google Scholar]
- M. Arjovsky, S. Chintala and L. Bottou, Wasserstein generative adversarial networks, in International Conference on Machine Learning. PMLR (2017) 214–223. [Google Scholar]
- M. Fazlyab, A. Robey, H. Hassani, M. Morari and G. Pappas, Efficient and accurate estimation of Lipschitz constants for deep neural networks. Adv. Neural Inform. Process. Syst. 32 (2019) 11427–11438. [Google Scholar]
- A. Virmaux and K. Scaman, Lipschitz regularity of deep neural networks: analysis and efficient estimation. Adv. Neural Inform. Process. Syst. 31 (2018) 3835–3844. [Google Scholar]
- T. Miyato, T. Kataoka, M. Koyama and Y. Yoshida, Spectral normalization for generative adversarial networks. Int. Conf. Learn. Represent. 6 (2018). Article ID 6644706. [Google Scholar]
- D. Alvarez-Melis, S. Jegelka and T.S. Jaakkola, Towards optimal transport with global invariances, in The 22nd International Conference on Artificial Intelligence and Statistics. PMLR (2019) 1870–1879. [Google Scholar]
- A. Salmona, J. Delon and A. Desolneux, Gromov-Wasserstein-like distances in the gaussian mixture models space. arXiv preprint arXiv:2310.11256 (2023). [Google Scholar]
- F. Santambrogio, Optimal transport for applied mathematicians. Birkäaser, NY 55 (2015) 94. [Google Scholar]
- C. Villani, Optimal Transport: Old and New/Cedric Villani. Grundlehren der mathematischen Wissenschaften. Springer, Berlin (2009). [Google Scholar]
- W. Gangbo and R.J. McCann, The geometry of optimal transportation. Acta Mathematica 177 (1996) 113–161. [Google Scholar]
- A. Pratelli, On the equality between Monge's infimum and Kantorovich's minimum in optimal mass transportation, in Annales de l'Institut Henri Poincare (B) Probability and Statistics, Vol. 43. Elsevier (2007) 1–13. [Google Scholar]
- Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions. Commun. Pure Appl. Math. 44 (1991) 375–417. [CrossRef] [Google Scholar]
- F.-P. Paty, A. d'Aspremont and M. Cuturi, Regularity as regularization: Smooth and strongly convex Brenier potentials in optimal transport, in International Conference on Artificial Intelligence and Statistics. PMLR (2020) 1222–1232. [Google Scholar]
- E. Black, S. Yeom and M. Fredrikson, Fliptest: fairness testing via optimal transport, in Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency (2020) 111–121. [Google Scholar]
- L. De Lara, A. Gonzalez-Sanz and J.-M. Loubes, A consistent extension of discrete optimal transport maps for machine learning applications. arXiv preprint arXiv:2102.08644 (2021). [Google Scholar]
- T. Manole, S. Balakrishnan, J. Niles-Weed and L. Wasserman, Plugin estimation of smooth optimal transport maps. arXiv preprint arXiv:2107.12364 (2021). [Google Scholar]
- M. Perrot, N. Courty, R. Flamary and A. Habrard, Mapping estimation for discrete optimal transport. Adv. Neural Inform. Process. Syst. 29 (2016) 4197–4205. [Google Scholar]
- A.-A. Pooladian and J. Niles-Weed, Entropic estimation of optimal transport maps (2024). [Google Scholar]
- V. Seguy, B.B. Damodaran, R. Flamary, N. Courty, A. Rolet and M. Blondel, Large-scale optimal transport and mapping estimation. arXiv preprint arXiv:1711.02283 (2017). [Google Scholar]
- J.-C. Hütter and P. Rigollet, Minimax estimation of smooth optimal transport maps. Ann. Statist. 49 (2021) 1166–1194. [Google Scholar]
- M.P. Do Carmo and J. Flaherty Francis, Riemannian Geometry, Vol. 2. Springer (1992). [Google Scholar]
- Q. Merigot and B. Thibert, Optimal transport: discretization and algorithms. working paper or preprint (2020). [Google Scholar]
- Q. Merigot, F. Santambrogio and C. Sarrazin, Non-asymptotic convergence bounds for Wasserstein approximation using point clouds. Adv. Neural Inform. Process. Syst. 34 (2021) 12810–12821. [Google Scholar]
- K. Fatras, Y. Zine, S. Majewski, R. Flamary, R. Gribonval and N. Courty, Minibatch optimal transport distances; analysis and applications. arXiv preprint arXiv:2101.01792 (2021). [Google Scholar]
- G. Peyre, M. Cuturi et al., Computational optimal transport: with applications to data science. Found. Trends Mach. Learn. 11 (2019) 355–607. [CrossRef] [Google Scholar]
- J. Delon and A. Desolneux, A Wasserstein-type distance in the space of Gaussian mixture models. SIAM J. Imaging Sci. 13 (2020) 936–970. [Google Scholar]
- T. Dumont, T. Lacombe and F.-X. Vialard, On the Existence of Monge Maps for the Gromov-Wasserstein Distance. working paper or preprint (2022). [Google Scholar]
- J.L. Kelley, General Topology. Courier Dover Publications (2017). [Google Scholar]
- L. Ambrosio, E. Brue, D. Semola et al., Lectures on Optimal Transport, Vol. 130. Springer (2021). [Google Scholar]
- E. Tanguy, Convergence of SGD for training neural networks with sliced Wasserstein losses. Trans. Mach. Learn. Res. Preprint arXiv:2307.11714v1 (2023). [Google Scholar]
- L. Ambrosio, N. Gigli and G. Savare, Gradient Flows: In Metric Spaces and in the Space of Probability Measures. Springer Science & Business Media (2005). [Google Scholar]
- G. De Philippis, A.R. Meszaros, F. Santambrogio and B. Velichkov, BV estimates in optimal transportation and applications. Arch. Rational Mech. Anal. 219 (2016) 829–860. [Google Scholar]
- A. Adve and A. Meszaros, On nonexpansiveness of metric projection operators on Wasserstein spaces. arXiv preprint arXiv:2009.01370 (2020). [Google Scholar]
- M. Cuturi, Sinkhorn distances: Lightspeed computation of optimal transport. Adv. Neural Inform. Process. Syst. 26 (2013) 2292–2300. [Google Scholar]
- A.B. Taylor, Convex interpolation and performance estimation of first-order methods for convex optimization. PhD thesis, Catholic University of Louvain, Louvain-la-Neuve, Belgium (2017). [Google Scholar]
- S. Wakabayashi, Remarks on semi-algebraic functions (2008). Online Notes. [Google Scholar]
- J. Bolte and E. Pauwels, Conservative set valued fields, automatic differentiation, stochastic gradient methods and deep learning. Math. Program. 188 (2021) 19–51. [Google Scholar]
- J.M. Danskin, The theory of max-min, with applications. SIAM J. Appl. Math. 14 (1966) 641–664. [Google Scholar]
- Y.M. Ermoliev and V.I. Norkin, Stochastic generalized gradient method with application to insurance risk management. IIASA Interim Report, IR-97–021, Laxenburg, Austria (1997). [Google Scholar]
- J. Bolte, A. Daniilidis and A. Lewis, Tame functions are semismooth. Math. Program. 117 (2009) 5–19. [Google Scholar]
- V.S. Mikhalevich, A.M. Gupal and V.I. Norkin, Methods of nonconvex optimization. arXiv preprint, arXiv:2406.10406 (2024). [Google Scholar]
- A.B. Taylor, J.M. Hendrickx and F. Glineur, Smooth strongly convex interpolation and exact worst-case performance of first-order methods. Math. Program. 161 (2017) 307–345. [Google Scholar]
- R. Flamary, N. Courty, A. Gramfort, M.Z. Alaya, A. Boisbunon, S. Chambon, L. Chapel, A. Corenflos, K. Fatras, N. Fournier, L. Gautheron, N.T.H. Gayraud, H. Janati, A. Rakotomamonjy, I. Redko, A. Rolet, A. Schutz, V. Seguy, D.J. Sutherland R. Tavenard, A. Tong and T. Vayer, POT: Python optimal transport. J. Mach. Learn. Res. 22 (2021) 1–8. [Google Scholar]
- Y. Ye and E. Tse, An extension of Karmarkar's projective algorithm for convex quadratic programming. Math. Program. 44 (1989) 157–179. [Google Scholar]
- G. Peyre and M. Cuturi, Computational optimal transport. Found. Trends Mach. Learn. 51 (2019) 1–44. [Google Scholar]
- R.E. Tarjan, Dynamic trees as search trees via Euler tours, applied to the network simplex algorithm. Math. Program. 78 (1997) 169–177. [Google Scholar]
- A. Rudi, U. Marteau-Ferey and F. Bach, Finding global minima via kernel approximations. Math. Program. (2024) 1–82. [Google Scholar]
- B. Charlier, J. Feydy, J.A. Glaunes, F.-D. Collin and G. Durif, Kernel operations on the gpu, with autodiff, without memory overflows. J. Mach. Learn. Res. 22 (2021) 1–6. [Google Scholar]
- J. Bolte, T. Le and E. Pauwels, Subgradient sampling for nonsmooth nonconvex minimization. SIAM J. Optim. 33 (2023) 2542–2569. [Google Scholar]
- D. Davis, D. Drusvyatskiy, S. Kakade and J.D. Lee, Stochastic subgradient method converges on tame functions. Found. Computat. Math. 20 (2020) 119–154. [Google Scholar]
- L.C. Evans, Measure Theory and Fine Properties of Functions. Routledge (2018). [Google Scholar]
- P. Embrechts and M. Hofert, A note on generalized inverses. Math. Methods Oper. Res. 77 (2013) 423–432. [Google Scholar]
- N. Aronszajn, Theory of reproducing kernels. Trans. Am. Math. Soc. 68 (1990) 337–404. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.
