Open Access
Issue
ESAIM: COCV
Volume 31, 2025
Article Number 3
Number of page(s) 17
DOI https://doi.org/10.1051/cocv/2024089
Published online 06 January 2025
  1. H. Du, J.P. DeGrave, F. Xue, D. Liang, W. Ning, J. Yang, M. Tian, Y. Zhang and S. Jin, Highly stable skyrmion state in helimagnetic MnSi nanowires. Nano Lett. 14 (2014) 2026–2032. [CrossRef] [PubMed] [Google Scholar]
  2. N. Mathur, M.J. Stolt, K. Niitsu, X. Yu, D. Shindo, Y. Tokura and S. Jin, Electron holography and magnetotransport measurements reveal stabilized magnetic skyrmions in Fe1-xCoxSi nanowires. ACS Nano 13 (2019) 7833–7841. [CrossRef] [PubMed] [Google Scholar]
  3. Y. Liu, S. Vaitiekenas, S. Martí-Sánchez, C. Koch, S. Hart, Z. Cui, T. Kanne, S.A. Khan, R. Tanta, S. Upadhyay, M.E. Cachaza, C.M. Marcus, J. Arbiol, K.A. Moler and P. Krogstrup, Semiconductor–ferromagnetic insulator–superconductor nanowires: stray field and exchange field. Nano Lett. 20 (2020) 456–462. [CrossRef] [PubMed] [Google Scholar]
  4. S. Vaitiekėnas, Y. Liu, P. Krogstrup and C.M. Marcus, Zero-bias peaks at zero magnetic field in ferromagnetic hybrid nanowires. Nat. Phys. 17 (2021) 43–47. [CrossRef] [Google Scholar]
  5. M. Schöbitz, A. De Riz, S. Martin, S. Bochmann, C. Thirion, J. Vogel, M. Foerster, L. Aballe, T. Mentes, A. Locatelli, F. Genuzio, S. Le-Denmat, L. Cagnon, J. Toussaint, D. Gusakova, J. Bachmann and O. Fruchart, Fast domain wall motion governed by topology and Œrsted fields in cylindrical magnetic nanowires. Phys. Rev. Lett. 123 (2019) 217201. [CrossRef] [PubMed] [Google Scholar]
  6. D. Sanz-Hernández, A. Hierro-Rodriguez, C. Donnelly, J. Pablo-Navarro, A. Sorrentino, E. Pereiro, C. Magén, S. McVitie, J.M. de Teresa, S. Ferrer, P. Fischer and A. Fernández-Pacheco, Artificial double-helix for geometrical control of magnetic chirality. ACS Nano 14 (2020) 8084–8092. [CrossRef] [PubMed] [Google Scholar]
  7. A. Fernández-Pacheco, R. Streubel, O. Fruchart, R. Hertel, P. Fischer and R.P. Cowburn, Three-dimensional nanomagnetism. Nat. Commun. 8 (2017) 15756. [CrossRef] [Google Scholar]
  8. D. Makarov and D. Sheka, Curvilinear Micromagnetism: From Fundamentals to Applications. Springer International Publishing (2022). [CrossRef] [Google Scholar]
  9. W. Huang, C. Gatel, Z.-A. Li and G. Richter, Synthesis of magnetic Fe and Co nano-whiskers and platelets via physical vapor deposition. Mater. Des. 208 (2021) 109914. [CrossRef] [Google Scholar]
  10. S. Sahoo, S. Mondal, G. Williams, A. May, S. Ladak and A. Barman, Ultrafast magnetization dynamics in a nanoscale three-dimensional cobalt tetrapod structure. Nanoscale 10 (2018) 9981–9986. [CrossRef] [PubMed] [Google Scholar]
  11. L. Keller, M.K.I. Al Mamoori, J. Pieper, C. Gspan, I. Stockem, C. Schröder, S. Barth, R. Winkler, H. Plank, M. Pohlit, J. Müller and M. Huth, Direct-write of free-form building blocks for artificial magnetic 3D lattices. Sci. Rep. 8 (2018) 6160. [CrossRef] [Google Scholar]
  12. S. Gliga, G. Seniutinas, A. Weber and C. David, Architectural structures open new dimensions in magnetism: magnetic buckyballs. Mater. Today 26 (2019) 100–101. [CrossRef] [Google Scholar]
  13. O.M. Volkov, O.V. Pylypovskyi, F. Porrati, F. Kronast, J.A. Fernandez-Roldan, A. Kkay, A. Kuprava, S. Barth, F.N. Rybakov, O. Eriksson, S. Lamb-Camarena, P. Makushko, M.-A. Mawass, S. Shakeel, O.V. Dobrovolskiy, M. Huth and D. Makarov, Three-dimensional magnetic nanotextures with high-order vorticity in soft magnetic wireframes. Nat. Commun. 15 (2024) 2193. [CrossRef] [Google Scholar]
  14. A. Prohl, Computational micromagnetism, in Advances in Numerical Mathematics. B. G. Teubner, Stuttgart (2001). [CrossRef] [Google Scholar]
  15. M. Kruzík and A. Prohl, Recent developments in the modeling, analysis, and numerics of ferromagnetism. SIAM Rev. 48 (2006) 439–483. [CrossRef] [MathSciNet] [Google Scholar]
  16. C.J. García-Cervera, Numerical micromagnetics: a review. Bol. Soc. Esp. Mat. Apl. SeMA 39 (2007) 103–135. [Google Scholar]
  17. L. Exl, J. Fischbacher, A. Kovacs, H. Oezelt, M. Gusenbauer and T. Schrefl, Preconditioned nonlinear conjugate gradient method for micromagnetic energy minimization. Comput. Phys. Commun. 235 (2019) 179–186. [CrossRef] [Google Scholar]
  18. F. Zheng, F.N. Rybakov, N.S. Kiselev, D. Song, A. Kovács, H. Du, S. Blügel and R.E. Dunin-Borkowski, Magnetic skyrmion braids. Nat. Commun. 12 (2021) 5316. [CrossRef] [Google Scholar]
  19. R. Cheenikundil and R. Hertel, Switchable magnetic frustration in buckyball nanoarchitectures. Appl. Phys. Lett. 118 (2021) 212403. [CrossRef] [Google Scholar]
  20. G. Gioia and R.D. James, Micromagnetics of very thin films. Proc. Roy. Soc. Lond. Ser. A: Math. Phys. Eng. Sci. 453 (1997) 213–223. [CrossRef] [Google Scholar]
  21. G. Carbou, Thin layers in micromagnetism. Math. Models Methods Appl. Sci. 11 (2001) 1529–1546. [CrossRef] [MathSciNet] [Google Scholar]
  22. A. DeSimone, R.V. Kohn, S. Müller and F. Otto, A reduced theory for thin-film micromagnetics. Commun. Pure Appl. Math. 55 (2002) 1408–1460. [CrossRef] [Google Scholar]
  23. A. DeSimone, R.V. Kohn, S. Müller, F. Otto and R. Schäfer, Two-dimensional modelling of soft ferromagnetic films. Roy. Soc. Lond. Proc. Ser. A. Math. Phys. Eng. Sci. 457 (2001) 2983–2991. [CrossRef] [Google Scholar]
  24. R.V. Kohn and V.V. Slastikov, Another thin-film limit of micromagnetics. Arch. Rational Mech. Anal. 178 (2005) 227–245. [CrossRef] [MathSciNet] [Google Scholar]
  25. R. Moser, Boundary vortices for thin ferromagnetic films. Arch. Rational Mech. Anal. 174 (2004) 267–300. [CrossRef] [MathSciNet] [Google Scholar]
  26. R. Moser, Moving boundary vortices for a thin-film limit in micromagnetics. Commun. Pure Appl. Math. 58 (2005) 701–721. [CrossRef] [Google Scholar]
  27. V. Slastikov, Micromagnetics of thin shells. Math. Models Methods Appl. Sci. 15 (2005) 1469–1487. [CrossRef] [MathSciNet] [Google Scholar]
  28. G. Di Fratta, C.B. Muratov and V.V. Slastikov, Reduced energies for thin ferromagnetic films with perpendicular anisotropy. Math. Models Methods Appl. Sci. 34 (2024) 1861–1904. [CrossRef] [MathSciNet] [Google Scholar]
  29. R.V. Kohn and V.V. Slastikov, Effective dynamics for ferromagnetic thin films: a rigorous justification. Proc. Roy. Soc. Lond. Ser. A. Math. Phys. Eng. Sci. 461 (2005) 143–154. [Google Scholar]
  30. C. Melcher, Thin-film limits for Landau–Lifshitz–Gilbert equations. SIAM J. Math. Anal. 42 (2010) 519–537. [CrossRef] [MathSciNet] [Google Scholar]
  31. C.J. García-Cervera and E. Weinan, Effective dynamics for ferromagnetic thin films. J. Appl. Phys. 90 (2001) 370–374. [CrossRef] [Google Scholar]
  32. A. Capella, C. Melcher and F. Otto, Wave-type dynamics in ferromagnetic thin films and the motion of Néel walls. Nonlinearity 20 (2007) 2519–2537. [CrossRef] [MathSciNet] [Google Scholar]
  33. I. Dzyaloshinsky, A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4 (1958) 241–255. [CrossRef] [Google Scholar]
  34. T. Moriya, Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120 (1960) 91–98. [CrossRef] [Google Scholar]
  35. A. Fert, N. Reyren and V. Cros, Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2 (2017) 1–15. [Google Scholar]
  36. E. Davoli, G. Di Fratta, D. Praetorius and M. Ruggeri, Micromagnetics of thin films in the presence of Dzyaloshinskii–Moriya interaction. Math. Models Methods Appl. Sci. 32 (2022) 911–939. [CrossRef] [MathSciNet] [Google Scholar]
  37. C. Melcher, Chiral skyrmions in the plane. Proc. Roy. Soc. Lond. Ser. A. Math. Phys. Eng. Sci. 470 (2014) 20140394. [Google Scholar]
  38. C.B. Muratov and V.V. Slastikov, Domain structure of ultrathin ferromagnetic elements in the presence of Dzyaloshinskii–Moriya interaction. Proc. Roy. Soc. A: Math. Phys. Eng. Sci. 473 (2017) 20160666. [Google Scholar]
  39. C.B. Muratov, V.V. Slastikov, A.G. Kolesnikov and O.A. Tretiakov, Theory of the dzyaloshinskii domain-wall tilt in ferromagnetic nanostrips. Phys. Rev. B 96 (2017) 134417. [CrossRef] [Google Scholar]
  40. G. Di Fratta, Micromagnetics of curved thin films. Z. Angew. Math. Phys. 71 (2020) 111. [CrossRef] [Google Scholar]
  41. G. Di Fratta, C.B. Muratov, F. Rybakov and V.V. Slastikov, Variational principles of micromagnetics revisited. SIAM J. Math. Anal. 52 (2020) 3580–3599. [CrossRef] [MathSciNet] [Google Scholar]
  42. G. Di Fratta and V. Slastikov, Curved thin-film limits of chiral Dirichlet energies. Nonlinear Anal. 234 (2023) 113303. [CrossRef] [Google Scholar]
  43. V.V. Slastikov and C. Sonnenberg, Reduced models for ferromagnetic nanowires. IMA J. Appl. Math. 77 (2012) 220–235. [CrossRef] [MathSciNet] [Google Scholar]
  44. W.F. Brown, Micromagnetics. Interscience Publishers, London (1963). [Google Scholar]
  45. A. Hubert and R. Schäfer, Magnetic Domains: The Analysis of Magnetic Microstructures. Springer Science & Business Media (2008). [Google Scholar]
  46. L. Landau and E. Lifshitz, On the theory of the dispersion of magnetic permeability in ferromagnetic bodies, in Perspectives in Theoretical Physics. Elsevier (1992) 51–65. [CrossRef] [Google Scholar]
  47. F. Alouges and G. Di Fratta, Homogenization of composite ferromagnetic materials. Proc. Roy. Soc. A: Math. Phys. Eng. Sci. 471 (2015) 20150365. [Google Scholar]
  48. E. Davoli and G. Di Fratta, Homogenization of chiral magnetic materials: a mathematical evidence of Dzyaloshinskii’s predictions on helical structures. J. Nonlinear Sci. 30 (2020) 1229–1262. [CrossRef] [MathSciNet] [Google Scholar]
  49. E. Davoli, G. Di Fratta and R. Giorgio, A Bourgain–Brezis–Mironescu formula accounting for nonlocal antisymmetric exchange interactions. SIAM J. Math. Anal. 56 (2024) 6995–7013. [CrossRef] [MathSciNet] [Google Scholar]
  50. L. Landau and E. Lifshitz, Statistical Physics, Vol. 5. Elsevier (2013). [Google Scholar]
  51. D. Harutyunyan, On the existence and stability of minimizers in ferromagnetic nanowires. J. Math. Anal. Appl. 434 (2016) 1719–1739. [CrossRef] [MathSciNet] [Google Scholar]
  52. O. Boulle, S. Rohart, L.D. Buda-Prejbeanu, E. Jué, I.M. Miron, S. Pizzini, J. Vogel, G. Gaudin and A. Thiaville, Domain wall tilting in the presence of the Dzyaloshinskii-Moriya interaction in out-of-plane magnetized magnetic nanotracks. Phys. Rev. Lett. 111 (2013) 217203. [CrossRef] [PubMed] [Google Scholar]
  53. A.B. Borisov and Y.A. Izyumov, Nonlinear excitation in spiral magnetic structures. Dokl. Akad. Nauk SSSR 283 (1985) 859–861. [Google Scholar]
  54. G. Di Fratta, A. Fiorenza and V. Slastikov, On symmetry of energy minimizing harmonic-type maps on cylindrical surfaces. Math. Eng. 5 (2023) 1–38. [CrossRef] [Google Scholar]
  55. G. Carbou, M. Moussaoui and R. Rachi, Stability of steady states in ferromagnetic rings. J. Math. Phys. 63 (2022) Paper No. 031508, 28. [CrossRef] [Google Scholar]
  56. F.N. Rybakov, A. Pervishko, O. Eriksson and E. Babaev, Antichiral ferromagnetism. Phys. Rev. B 104 (2021) L020406. [CrossRef] [Google Scholar]
  57. I. Ado, O. Tchernyshyov and M. Titov, Noncollinear ground state from a four-spin chiral exchange in a tetrahedral magnet. Phys. Rev. Lett. 127 (2021) 127204. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.