Open Access
| Issue |
ESAIM: COCV
Volume 31, 2025
|
|
|---|---|---|
| Article Number | 67 | |
| Number of page(s) | 23 | |
| DOI | https://doi.org/10.1051/cocv/2025053 | |
| Published online | 19 August 2025 | |
- K. Astala and L. Päivärinta, Calderon's inverse conductivity problem in the plane, Ann. Math. 163 (2006) 265–299. [Google Scholar]
- J.L. Mueller and S. Siltanen, Linear and Nonlinear Inverse Problems with Practical Applications. SIAM, Philadelphia (2012). [Google Scholar]
- A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems, 2nd edn. Springer, New York (2011). [Google Scholar]
- K. Knudsen, M. Lassas, J.L. Mueller and S. Siltanen, D-bar method for electrical impedance tomography with discontinuous conductivities. SIAM J. Appl. Math. 67 (2007) 893–913. [Google Scholar]
- E. Somersalo, M. Cheney, D. Isaacson and E. Isaacson, Layer striping: a direct numerical method for impedance imaging. Inverse Probl. 7 (1991) 899–926. [Google Scholar]
- M. Cheney, D. Isaacson, J. Nowell, J. Goble and S. Simske, NOSER: an algorithm for solving the inverse conductivity problem. Int. J. Imag. Syst. Tech. 2 (1990) 85–101. [Google Scholar]
- D.C. Dobson, Convergence of a reconstruction method for the inverse conductivity problem. SIAM J. Appl. Math. 52 (1992) 442–458. [Google Scholar]
- K. Paulson, W. Lionheart and M. Pidcock, POMPUS: an optimized EIT reconstruction algorithm. Inverse Probl. 11 (1995) 425–437. [Google Scholar]
- L. Baratchart, J. Leblond, F. Mandréa and E.B. Saff, How can the meromorphic approximation help to solve some 2D inverse problems for the Laplacian? Inverse Probl. 15 (1999) 79–90. [Google Scholar]
- M. Hanke, On real-time algorithms for the location search of discontinuous conductivities with one measurement. Inverse Probl. 24 (2008) 045005. [Google Scholar]
- H. Kang and H. Lee, Identification of simple poles via boundary measurements and an application of EIT. Inverse Probl. 20 (2004) 1853–1863. [Google Scholar]
- M. Hanke, N. Hyvonen and S. Reusswig, Convex source support and its application to electric impedance tomography. SIAM J. Imaging Sci. 1 (2008) 364–378. [Google Scholar]
- A. Henrot and M. Pierre, Variation et optimisation de formes. Une analyse geometrique. Springer, Berlin (2005). [Google Scholar]
- J. Sokolowski and J.-P. Zolesio, Introduction to Shape Optimization. Springer, Berlin (1992). [Google Scholar]
- F. Hettlich and W. Rundell, The determination of a discontinuity in a conductivity from a single boundary measurement. Inverse Probl. 14 (1998) 67–82. [Google Scholar]
- M.C. Delfour and J.P. Zolesio, Structure of shape derivatives for nonsmooth domains. J. Funct. Anal. 104 (1992) 1–33. [Google Scholar]
- J. Lamboley, A. Novruzi and M. Pierre, Estimates of first and second order shape derivatives in nonsmooth multidimensional domains and applications. J. Funct. Anal. 270 (2016) 2616–2652. [Google Scholar]
- A. Laurain, Distributed and boundary expressions of first and second order shape derivatives in nonsmooth domains. J. Math. Pures Appl. 134 (2020) 328–368. [CrossRef] [MathSciNet] [Google Scholar]
- E. Beretta, E. Francini and S. Vessella, Differentiability of the Dirichlet to Neumann map under movements of polygonal inclusions with an application to shape optimization. SIAM J. Math. Anal. 49 (2017) 756–776. [Google Scholar]
- E. Beretta, S. Micheletti, S. Perotto and M. Santacesaria, Reconstruction of a piecewise constant conductivity in a polygonal partition via shape optimization in EIT. J. Comput. Phys. 353 (2018) 264–280. [Google Scholar]
- V.A. Kondratiev, Boundary value problems for elliptic equations in domains with conical or angular points. Trans. Moscow Math. Soc. 16 (1967) 227–313. [Google Scholar]
- P. Grisvard, Singularities in Boundary Value Problems. Springer Verlag, Berlin (1992). [Google Scholar]
- M. Hanke, Lipschitz stability of an inverse conductivity problem with two Cauchy data pairs. Inverse Probl. 40 (2024) 105015. [Google Scholar]
- J.K. Seo, On the uniqueness in the inverse conductivity problem. J. Fourier Anal. Appl. 2 (1996) 227–235. [Google Scholar]
- L. Afraites, M. Dambrine and D. Kateb, Shape methods for the transmission problem with a single measurement. Numer. Funct. Anal. Optim. 28 (2007) 519–551. [CrossRef] [MathSciNet] [Google Scholar]
- W. McLean, Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000). [Google Scholar]
- A. Friedman and V. Isakov, On the uniqueness in the inverse conductivity problem with one measurement. Indiana Univ. Math. J. 38 (1989) 563–579. [Google Scholar]
- H. Bellout, A. Friedman and V. Isakov, Stability for an inverse problem in potential theory. Trans. Amer. Math. Soc. 332 (1992) 271–296. [Google Scholar]
- L. Escauriaza, E.B. Fabes and G. Verchota, On a regularity theorem for weak solutions to transmission problems with internal Lipschitz boundaries. Proc. Amer. Math. Soc. 115 (1992) 1069–1076. [Google Scholar]
- M. Costabel and E. Stephan, A direct boundary integral equation method for transmission problems. J. Math. Anal. Appl. 106 (1985) 367–413. [CrossRef] [MathSciNet] [Google Scholar]
- K. Ito, K. Kunisch and Z. Li, Level-set function approach to an inverse interface problem. Inverse Probl. 19 (2001) 1225–1242. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.
